• Nuttarut Noochudom Department of General Dentistry, Faculty of Dentistry, Srinakharinwirot University.
  • Sarun Keeratihattayakorn Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University.
  • Pavinee Padipatvuthikul Didron Department of General Dentistry, Faculty of Dentistry, Srinakharinwirot University.
  • Usanee Puengpaiboon Department of General Dentistry, Faculty of Dentistry, Srinakharinwirot University


Dental Implant, Crown, Fatigue, Mechanical Failure


The purpose of this study was to evaluate fatigue limit of implant-supported zirconia reinforced lithium silicate (ZLS) crown. Eleven implant-supported ZLS crowns (Implant diameter 5 mm x 10 mm in length) were fabricated for fatigue limit test using a standard fatigue tester. Following ISO 14801: 2016, samples were tested at 37C in 0.9% saline at 15 Hz until failure or reach 5x106 cycles. Three samples were subjected to static load for evaluation of single load to failure. Nominal peak levels at 10%, 20%, 30%, 40% of previously obtained static failure load were used for fatigue limit test. Two samples were tested at each load until catastrophic failure or the maximum of 5x106 cycles were reached. The mean failure load was 1,316.68 ± 50.59 N and the fatigue limit was 395 N. The fracture of failed samples was found only at the crowns, no failure was observed in implant components. In conclusion the fatigue limit value of implant-supported ZLS crowns obtained from this study show that ZLS can be used efficiently as restoration on dental implant from incisor to canine region for up to 5 years.


Download data is not yet available.


Nishioka, G., Prochnow, C., Firmino, A., Amaral, M., Bottino, M.A., Valandro, L.F., & Marques, de M.R. (2018). Fatigue strength of several dental ceramics indicated for CAD-CAM monolithic restorations. Brazilian oral research, 32, e53. https://doi.org/10.1590/1807-3107bor-2018.vol32.0053

Dogan, D.O., Gorler, O., Mutaf, B., Ozcan, M., Eyuboglu, G.B., & Ulgey, M. (2017). Fracture Resistance of Molar Crowns Fabricated with Monolithic All-Ceramic CAD/CAM Materials Cemented on Titanium Abutments: An In Vitro Study. Journal of prosthodontics, 26(4), 309-314.

Preis, V., Hahnel, S., Behr, M., Bein, L., and Rosentritt, M. (2017). In-vitro fatigue and fracture testing of CAD/CAM materials in implant-supported molar crowns. Dental materials, 33(4), 427-433.

Vág, J., Nagy, Z., Bocklet, C., Kiss, T., Nagy, Á., Simon, B., and Renne, W. (2020). Marginal and internal fit of full ceramic crowns milled using CADCAM systems on cadaver full arch scans. BMC Oral Health, 20(189), 1-12.

Fasbinder, D. J. (2006). Clinical performance of chairside CAD/CAM restorations. The Journal of the American Dental Association, 137, 22S-31S. https://doi.org/10.14219/jada.archive.2006.0395

Yeğin E., & Atala, M. H. (2020). Comparison of CAD/CAM manufactured implant-supported crowns with different analyses. Int J Implant Dent., 6(69).

Zarone, F., Ruggiero, G., Leone, R., Breschi, L., Leuci, S., & Sorrentino, R. (2021). Zirconia-reinforced lithium silicate (ZLS) mechanical and biological properties: A literature review. Journal of dentistry, 109, Article 103661. https://doi.org/10.1016/j.jdent.2021.103661

Al-Akhali, M., Chaar, M.S., Elsayed, A., Samran, A., & Kern, M. (2017). Fracture resistance of ceramic and polymer-based occlusal veneer restorations. Journal of the mechanical behavior of biomedical materials, 74, 245-250.

von Maltzahn, N. F., El Meniawy, O. I., Breitenbuecher, N., Kohorst, P., Stiesch, M., & Eisenburger, M. (2018). Fracture strength of ceramic posterior occlusal veneers for functional rehabilitation of an abrasive dentition. Int. J. Prosthodont, 31(5), 451-452.

El Ghoul, W., Ozcan, M., Silwadi, M., & Salameh, Z. (2019). Fracture resistance and failure modes of endocrowns manufactured with different CAD/CAM materials under axial and lateral loading. J. Esthet. Restor. Dent, 31, 378-387.

Zimmermann, M., Koller, C., Mehl, A., & Hickel, R. (2017). Indirect zirconia-reinforced lithium silicate ceramic CAD/CAM restorations: preliminary clinical results after 12 months. Quintessence international, 48, 19-25.

Bataineh, k. (2021). Fatigue of full crown monolithic CAD/CAM restorations for posterior teeth. research square, 1-11. https://doi.org/10.21203/rs.3.rs-892465/v1

Shemtov-Yona, K., & Rittel, D. (2016). Fatigue of dental implants: Facts and fallacies. Dentistry journal, 4(2), 1-11.

Rosentritt, M., Schneider-Feyrer, S., Behr, M., & Preis, V. (2018). In vitro shock absorption tests on implant-supported crowns: Influence of crown materials and luting agents. International Journal Oral Maxillofacial Implants, 33(1), 116-122.

Kim, J.H., Lee, S.-J., Park, J.S., & Ryu, J.J. (2013). Fracture Load of Monolithic CAD/CAM Lithium Disilicate Ceramic Crowns and Veneered Zirconia Crowns as a Posterior Implant Restoration. Implant Dentistry, 22(1), 66-70.

Ferrario, V. F., Sforza, C., Zanotti, G., & Tartaglia, G. M. (2004). Maximal bite forces in healthy young adults as predicted by surface electromyography. J Dent, 32(6), 451-457.

Sadid-Zadeh, R., Kutkut, A., & Kim, H. (2014). Prosthetic Failure in Implant Dentistry. Dental Clinics of North America, 59(1), 195-214.

Yu, T., Wang, F., Liu, Y., Wu, T., Deng, Z., & Chen, J. (2017). Fracture behaviors of monolithic lithium disilicate ceramic crowns with different thicknesses. RSC Advances, 7(41), 25542-25548. https://doi.org/10.1039/c6ra28847b

Gomes, R. S., Souza, C.M.C., Bergamo, E. T. P., Bordin, D., & Del Bel Cury, A. A. (2017). Misfit and fracture load of implant supported monolithic crowns in zirconia-reinforced lithium silicate. Journal of applied oral science, 25(3), 282-289.

Chen, X. P., Xiang, Z. X., Song, X. F., & Yin, L. (2020). Machinability: Zirconia-reinforced lithium silicate glass ceramic versus lithium disilicate glass ceramic. Journal of the mechanical behavior of biomedical materials, 101, Article 103435. https://doi.org/10.1016/j.jmbbm.2019.103435

Weyhrauch, M., Igiel, C., Scheller, H., Weibrich, G., & Lehmann, K. M. (2016). Fracture Strength of Monolithic All-Ceramic Crowns on Titanium Implant Abutments. The International journal of oral & maxillofacial implants, 31(2), 304-309.

Kang, S.-Y., Yu, J.-M., Lee, J.-S., Park, K.-S., & Lee, S.-Y. (2020). Evaluation of the Milling Accuracy of Zirconia-Reinforced Lithium Silicate Crowns Fabricated Using the Dental Medical Device System: A Three-Dimensional Analysis. Materials (Basel), 13(20), 4680.


Jager, N. D., Pallav, P., & Feilzer, A. J. (2004). The apparent increase of the Young's modulus in thin cement layers. Dental materials, 20(5), 457-462.

Duana, Y., & Griggs, J. A. (2018). Effect of Loading Frequency on Cyclic Fatigue Lifetime of a Standard-Diameter Implant with an Internal Abutment Connection. Dental materials, 34(12), 1711-1716.

Marchetti, E., Ratta, S., Mummolo, S., Tecco, S., Pecci, R., Bedini, R., & Marzo, G. (2016). Mechanical Reliability Evaluation of an Oral Implant-Abutment System According to UNI EN ISO 14801 Fatigue Test Protocol. Implant Dentistry, 25(5), 613-618.

García-González, M., Blasón-González, S., García-García, I., Lamela-Rey, M. J., Fernández-Canteli, A., & Álvarez-Arenal, Á. (2020). Optimized Planning and Evaluation of Dental Implant Fatigue Testing: A Specific Software Application. Biology (Basel), 9(11), 372. https://doi.org/10.3390/biology9110372

van Eijden, T. M. (1991). Three-dimensional analyses of human bite-force magnitude and moment. Archives of oral biology, 36(7), 535-539.




How to Cite

Noochudom, N. ., Keeratihattayakorn , S. ., Padipatvuthikul Didron, P. ., & Puengpaiboon, U. . (2022). FATIGUE TESTING OF IMPLANT SUPPORTED ZIRCONIA REINFORCED LITHIUM SILICATE CROWN. Srinakharinwirot University Journal of Sciences and Technology, 14(28, July-December), 53–64. Retrieved from https://ph02.tci-thaijo.org/index.php/swujournal/article/view/248078