Prediction of Electricity Consumption Using Interpretable Machine Learning Approach ข้อมูลจากประเทศไทยในช่วงปี 1973 จนถึง 2021

Main Article Content

Theera Thongsanitkarn
Prompong Sugunnasil

Abstract

The continuously increasing demand for electricity presents significant issues for policymakers and utility companies. An accurate forecast of electricity usage is critical for effective energy management. This thesis provides an interpretable machine-learning approach for forecasting energy demand that incorporates macroeconomic variables such as GDP, inflation, and industrial growth. The study uses data from the World Development Indicators from 1973 to 2021 and employs the multi-model. Our findings emphasize the importance of economic considerations on electricity demand, resulting in a reliable method for forecasting energy consumption. This study adds to the body of knowledge by providing a clear model to aid in decision-making processes connected to energy management and policy creation.

Article Details

Section
Academic Articles

References

Qureshi, M.; Arbab, M. A.; Rehman, S. ur. Deep Learning-Based Forecasting of Electricity Consumption. Sci Rep. 2024, 14(1). https://doi.org/10.1038/s41598-024-56602-4.

Chung, J.; Jang, B. Accurate Prediction of Electricity Consumption Using a Hybrid CNN-LSTM Model Based on Multivariable Data. PLoS ONE 2022, 17(11), e0278071. https://doi.org/10.1371/journal.pone.0278071.

Wang, T.; Zhao, Q.; Gao, W.; He, X. Research on Energy Consumption in Household Sector: A Comprehensive Review Based on Bibliometric Analysis. Front. Energy Res. 2024, 11. https://doi.org/10.3389/fenrg.2023.1209290.

Altın, H. The Impact of Energy Efficiency and Renewable Energy Consumption on Carbon Emissions in G7 Countries. International Journal of Sustainable Engineering 2024, 17(1), 134-142. https://doi.org/10.1080/19397038.2024.2319648.

Ferrer, A. L. C.; Thomé, A. M. T.; Scavarda, A. J. Sustainable Urban Infrastructure: A Review. Resources, Conservation and Recycling 2018, 128, 360–372. https://doi.org/10.1016/j.resconrec.2016.07.017.

Angel, S. Urban Expansion: Theory, Evidence and Practice. Buildings and Cities 2023, 4(1), 124-138. https://doi.org/10.5334/bc.348.

Tang, X.; Dai, Y.; Wang, T.; Chen, Y. Short‐term Power Load Forecasting Based on Multi‐layer Bidirectional Recurrent Neural Network. IET Generation Trans & Dist 2019, 13(17), 3847-3854. https://doi.org/10.1049/iet-gtd.2018.6687.

Axay J Mehta; Mehta, H. A.; T.C.Manjunath; Ardil, C. A Multi-Layer Artificial Neural Network Architecture Design For Load Forecasting In Power Systems. Zenodo 2008. https://doi.org/10.5281/ZENODO.1059528.

Jiang, P.; Li, R.; Liu, N.; Gao, Y. A Novel Composite Electricity Demand Forecasting Framework by Data Processing and Optimized Support Vector Machine. Applied Energy 2020, 260, 114243. https://doi.org/10.1016/j.apenergy.2019.114243.

Goswami, K.; Kandali, A. B. Electricity Demand Prediction Using Data Driven Forecasting Scheme: Performance ARIMA and SARIMA for Real-Time Load Data of Assam. 2020 International Conference on Computational Evaluation (ComPE), 2020, 570-574. https://doi.org/10.1109/compe49325.2020.9200031.

Tarmanini, C.; Sarma, N.; Gezegin, C.; Ozgonenel, O. Short Term Load Forecasting Based on ARIMA and ANN Approaches. Energy Reports 2023, 9, 550–557. https://doi.org/10.1016/j.egyr.2023.01.060.

Nie, P.; Roccotelli, M.; Fanti, M. P.; Ming, Z.; Li, Z. Prediction of Home Energy Consumption Based on Gradient Boosting Regression Tree. Energy Reports 2021, 7, 1246-1255. https://doi.org/10.1016/j.egyr.2021.02.006.

Abbasimehr, H.; Shabani, M.; Yousefi, M. An Optimized Model Using LSTM Network for Demand Forecasting. Computers & Industrial Engineering 2020, 143, 106435. https://doi.org/10.1016/j.cie.2020.106435.

Islam, B. ul; Ahmed, S. F. Short-Term Electrical Load Demand Forecasting Based on LSTM and RNN Deep Neural Networks. Mathematical Problems in Engineering, 2022, 1-10. https://doi.org/10.1155/2022/2316474.

Fan, G.-F.; Wei, X.; Li, Y.-T.; Hong, W.-C. Forecasting Electricity Consumption Using a Novel Hybrid Model. Sustainable Cities and Society 2020, 61, 102320. https://doi.org/10.1016/j.scs.2020.102320.

Bessec, M.; Fouquau, J. The Non-Linear Link between Electricity Consumption and Temperature in Europe: A Threshold Panel Approach. Energy Economics 2008, 30(5), 2705-2721. https://doi.org/10.1016/j.eneco.2008.02.003.

Ma, S.; Li, S.; Luo, Q.; Yu, Z.; Wang, Y. Revisiting the Relationships between Energy Consumption, Economic Development and Urban Size: A Global Perspective Using Remote Sensing Data. Heliyon 2024, 10(5), e27318. https://doi.org/10.1016/j.heliyon.2024.e27318.

Ahmed, M.; Huan, W.; Ali, N.; Shafi, A.; Ehsan, M.; Abdelrahman, K.; Khan, A. A.; Abbasi, S. S.; Fnais, M. S. The Effect of Energy Consumption, Income, and Population Growth on CO2 Emissions: Evidence from NARDL and Machine Learning Models. Sustainability 2023, 15(15), 11956. https://doi.org/10.3390/su151511956.

Narayan, P. K.; Smyth, R. Electricity Consumption, Employment and Real Income in Australia Evidence from Multivariate Granger Causality Tests. Energy Policy 2005, 33 (9), 1109–1116. https://doi.org/10.1016/j.enpol.2003.11.010.

Lu, F.; Ma, F.; Hu, S. Does Energy Consumption Play a Key Role? Re-Evaluating the Energy Consumption-Economic Growth Nexus from GDP Growth Rates Forecasting. Energy Economics 2024, 129, 107268. https://doi.org/10.1016/j.eneco.2023.107268.

Dokas, I.; Oikonomou, G.; Panagiotidis, M.; Spyromitros, E. Macroeconomic and Uncertainty Shocks’ Effects on Energy Prices: A Comprehensive Literature Review. Energies 2023, 16(3), 1491. https://doi.org/10.3390/en16031491.

Gilpin, L. H.; Bau, D.; Yuan, B. Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining Explanations: An Overview of Interpretability of Machine Learning. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), 2018, 80-89. https://doi.org/10.1109/dsaa.2018.00018.

Brusa, E.; Cibrario, L.; Delprete, C.; Di Maggio, L. G. Explainable AI for Machine Fault Diagnosis: Understanding Features’ Contribution in Machine Learning Models for Industrial Condition Monitoring. Applied Sciences 2023, 13(4), 2038. https://doi.org/10.3390/app13042038.

Bozorgpanah, A.; Torra, V. Explainable Machine Learning Models with Privacy. Prog Artif Intell 2024, 13(1), 31–50. https://doi.org/10.1007/s13748-024-00315-2.

Vishwarupe, V.; Joshi, P. M.; Mathias, N.; Maheshwari, S.; Mhaisalkar, S.; Pawar, V. Explainable AI and Interpretable Machine Learning: A Case Study in Perspective. Procedia Computer Science 2022, 204, 869-876. https://doi.org/10.1016/j.procs.2022.08.105.

Gramegna, A.; Giudici, P. SHAP and LIME: An Evaluation of Discriminative Power in Credit Risk. Front. Artif. Intell. 2021, 4. https://doi.org/10.3389/frai.2021.752558.

Ahmed, S.; Kaiser, M. S.; Shahadat Hossain, M.; Andersson, K. A Comparative Analysis of LIME and SHAP Interpreters With Explainable ML-Based Diabetes Predictions. IEEE Access 2025, 13, 37370-37388. https://doi.org/10.1109/access.2024.3422319.

Huang, A. A.; Huang, S. Y. Increasing Transparency in Machine Learning through Bootstrap Simulation and Shapely Additive Explanations. PLoS ONE 2023, 18(2), e0281922. https://doi.org/10.1371/journal.pone.0281922.

Zhang, H.; Chen, B.; Li, Y.; Geng, J.; Li, C.; Zhao, W.; Yan, H. Research on Medium- and Long-Term Electricity Demand Forecasting under Climate Change. Energy Reports 2022, 8, 1585-1600. https://doi.org/10.1016/j.egyr.2022.02.210.

Mir, A. A.; Alghassab, M.; Ullah, K.; Khan, Z. A.; Lu, Y.; Imran, M. A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons. Sustainability 2020, 12(15), 5931. https://doi.org/10.3390/su12155931.

Gonçalves, A. C. R.; Costoya, X.; Nieto, R.; Liberato, M. L. R. Extreme Weather Events on Energy Systems: A Comprehensive Review on Impacts, Mitigation, and Adaptation Measures. Sustainable Energy res. 2024, 11(1). https://doi.org/10.1186/s40807-023-00097-6.

Russo, M. A.; Carvalho, D.; Martins, N.; Monteiro, A. Forecasting the Inevitable: A Review on the Impacts of Climate Change on Renewable Energy Resources. Sustainable Energy Technologies and Assessments 2022, 52, 102283.

https://doi.org/10.1016/j.seta.2022.102283.

Benti, N. E.; Chaka, M. D.; Semie, A. G. Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability 2023, 15(9), 7087. https://doi.org/10.3390/su15097087.

Ahmad, T.; Zhang, H.; Yan, B. A Review on Renewable Energy and Electricity Requirement Forecasting Models for Smart Grid and Buildings. Sustainable Cities and Society 2020, 55, 102052. https://doi.org/10.1016/j.scs.2020.102052.

Phuangpornpitak, N.; Prommee, W. A study of load demand forecasting models in electric power system operation and planning. GMSARN Int. J. 2016, 10, 19-24. (In Thai)

Gebre, M. T.; Hwang, J.; Biru, G. Electricity Demand Analysis and Forecasting: The Case of GADA Special Economic Zone. Heliyon 2024, 10(3), e25364. https://doi.org/10.1016/j.heliyon.2024.e25364.

Fan, J.-L.; Hu, J.-W.; Zhang, X. Impacts of Climate Change on Electricity Demand in China: An Empirical Estimation Based on Panel Data. Energy 2019, 170, 880-888. https://doi.org/10.1016/j.energy.2018.12.044.

De Felice, M.; Alessandri, A.; Ruti, P. M. Electricity Demand Forecasting over Italy: Potential Benefits Using Numerical Weather Prediction Models. Electric Power Systems Research 2013, 104, 71-79. https://doi.org/10.1016/j.epsr.2013.06.004.

Abokyi, E.; Appiah-Konadu, P.; Sikayena, I.; Oteng-Abayie, E. F. Consumption of Electricity and Industrial Growth in the Case of Ghana. Journal of Energy 2018, 1-11. https://doi.org/10.1155/2018/8924835.

Madlener, R.; Sunak, Y. Impacts of Urbanization on Urban Structures and Energy Demand: What Can We Learn for Urban Energy Planning and Urbanization Management?. Sustainable Cities and Society 2011, 1(1), 45-53. https://doi.org/10.1016/j.scs.2010.08.006.

Salat, H.; Smoreda, Z.; Schläpfer, M. A Method to Estimate Population Densities and Electricity Consumption from Mobile Phone Data in Developing Countries. PLoS ONE 2020, 15(6), e0235224. https://doi.org/10.1371/journal.pone.0235224.

Arens, M.; Worrell, E. Diffusion of Energy Efficient Technologies in the German Steel Industry and Their Impact on Energy Consumption. Energy 2014, 73, 968-977. https://doi.org/10.1016/j.energy.2014.06.112.

Herring, H.; Roy, R. Technological Innovation, Energy Efficient Design and the Rebound Effect. Technovation 2007, 27(4), 194-203. https://doi.org/10.1016/j.technovation.2006.11.004.

Kwon, S.; Cho, S.-H.; Roberts, R. K.; Kim, H. J.; Park, K.; Edward Yu, T. Effects of Electricity-Price Policy on Electricity Demand and Manufacturing Output. Energy 2016, 102, 324-334. https://doi.org/10.1016/j.energy.2016.02.027.

Otsuka, A. Industrial Electricity Consumption Efficiency and Energy Policy in Japan. Utilities Policy 2023, 81, 101519. https://doi.org/10.1016/j.jup.2023.101519.

Zhou, K.; Yang, S. Understanding Household Energy Consumption Behavior: The Contribution of Energy Big Data Analytics. Renewable and Sustainable Energy Reviews 2016, 56, 810-819. https://doi.org/10.1016/j.rser.2015.12.001.

Dong, X.-Y.; Hao, Y. Would Income Inequality Affect Electricity Consumption? Evidence from China. Energy 2018, 142, 215-227. https://doi.org/10.1016/j.energy.2017.10.027.

Kapustin, N. O.; Grushevenko, D. A. Long-Term Electric Vehicles Outlook and Their Potential Impact on Electric Grid. Energy Policy 2020, 137, 111103. https://doi.org/10.1016/j.enpol.2019.111103.

Meliani, M.; Barkany, A. E.; Abbassi, I. E.; Darcherif, A. M.; Mahmoudi, M. Energy Management in the Smart Grid: State-of-the-Art and Future Trends. International Journal of Engineering Business Management 2021, 13. https://doi.org/10.1177/18479790211032920.

Wang, J. Q.; Du, Y.; Wang, J. LSTM Based Long-Term Energy Consumption Prediction with Periodicity. Energy 2020, 197, 117197. https://doi.org/10.1016/j.energy.2020.117197.

Shaikh, A. K.; Nazir, A.; Khan, I.; Shah, A. S. Short Term Energy Consumption Forecasting Using Neural Basis Expansion Analysis for Interpretable Time Series. Sci Rep. 2022, 12(1). https://doi.org/10.1038/s41598-022-26499-y.

Aisyah, S.; Simaremare, A. A.; Adytia, D.; Aditya, I. A.; Alamsyah, A. Exploratory Weather Data Analysis for Electricity Load Forecasting Using SVM and GRNN, Case Study in Bali, Indonesia. Energies 2022, 15(10), 3566. https://doi.org/10.3390/en15103566.

Pelka, P. Pattern-Based Forecasting of Monthly Electricity Demand Using Support Vector Machine. 2021 International Joint Conference on Neural Networks (IJCNN), 2021, 1-8. https://doi.org/10.1109/ijcnn52387.2021.9534134.

Zhang, G.; Guo, J. A Novel Ensemble Method for Residential Electricity Demand Forecasting Based on a Novel Sample Simulation Strategy. Energy 2020, 207, 118265. https://doi.org/10.1016/j.energy.2020.118265.

Iftikhar, H.; Zywiołek, J.; López-Gonzales, J. L.; Albalawi, O. Electricity Consumption Forecasting Using a Novel Homogeneous and Heterogeneous Ensemble Learning. Front. Energy Res. 2024, 12. https://doi.org/10.3389/fenrg.2024.1442502.

Ghareeb, A.; Al-bayaty, H.; Haseeb, Q.; Zeinalabideen, M. Ensemble Learning Models for Short-Term Electricity Demand Forecasting. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), 2020, 1–5. https://doi.org/10.1109/icdabi51230.2020.9325623.

Cawthorne, D.; de Queiroz, A. R.; Eshraghi, H.; Sankarasubramanian, A.; DeCarolis, J. F. The Role of Temperature Variability on Seasonal Electricity Demand in the Southern US. Front. Sustain. Cities 2021, 3. https://doi.org/10.3389/frsc.2021.644789.

Ha, J.; Tan, P.-P.; Goh, K.-L. Linear and Nonlinear Causal Relationship between Energy Consumption and Economic Growth in China: New Evidence Based on Wavelet Analysis. PLoS ONE 2018, 13(5), e0197785. https://doi.org/10.1371/journal.pone.0197785.

Kim, Y.-J.; Lee, S.-J.; Jin, H.-S.; Suh, I.-A.; Song, S.-Y. Comparison of Linear and Nonlinear Statistical Models for Analyzing Determinants of Residential Energy Consumption. Energy and Buildings 2020, 223, 110226. https://doi.org/10.1016/j.enbuild.2020.110226.

Chen, G.; Hu, Q.; Wang, J.; Wang, X.; Zhu, Y. Machine-Learning-Based Electric Power Forecasting. Sustainability 2023, 15(14), 11299. https://doi.org/10.3390/su151411299.

Surya, B.; Menne, F.; Sabhan, H.; Suriani, S.; Abubakar, H.; Idris, M. Economic Growth, Increasing Productivity of SMEs, and Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity 2021, 7(1), 20. https://doi.org/10.3390/joitmc7010020.

Bettarelli, L.; Estefania-Flores, J.; Furceri, D.; Loungani, P.; Pizzuto, P. Energy Inflation and Consumption Inequality. Energy Economics 2023, 124, 106823. https://doi.org/10.1016/j.eneco.2023.106823.

Barbierato, E.; Gatti, A. The Challenges of Machine Learning: A Critical Review. Electronics 2024, 13(2), 416. https://doi.org/10.3390/electronics13020416.

Freiesleben, T.; König, G.; Molnar, C.; Tejero-Cantero, A. Scientific Inference With Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena. arXiv 2022. https://doi.org/10.48550/ARXIV.2206.05487.

Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2020, 23(1), 18. https://doi.org/10.3390/e23010018.