A Comparative Study of the Performance of CNN-Based Models for Rice Leaf Disease Classification

Authors

  • Praetawan Jarutan -
  • Zagon Bussabong

Abstract

      The objectives of this study were: 1) to develop an artificial neural network model for classifying rice leaf diseases, and 2) to compare the performance of the models trained with augmented data against those trained without argumentation in classifying rice leaf diseases. The RiceLeafBD Dataset, consisted of 1,555 images divided into 4 disease categories: bacterial leaf blight, fungal leaf blight, brown leaf spot, and tunggro virus, was used for this study. This dataset is publicly available on the Kaggle Dataset platform. Three neural networks, namely InceptionNet-V2, MobileNet-V2, and EfficientNet-V2, were experimented. These models were modified by adding Squeeze-and-Excitation (SE) blocks to better capture the importance of each channel. The experiments were conducted on two datasets: the baseline dataset and the augmented dataset. Model training and testing were performed for 20 and 50 epochs. The statistics used for data analysis were accuracy, precision, recall, and F1-score.
The results of model development and comparison of the efficiency of artificial neural networks in classifying rice leaf diseases with and without augmented data showed that the modified models achieved higher performance in classifying rice leaf diseases than the base models. Among the three modified models, EfficientNet-V2 achieved the highest accuracy. Without augmentation, EfficientNet-V2 revealed accuracy, precision, recall, and F1-score values of 92.60%, 92.75%, 92.50%, and 92.25%, respectively. With augmentation (EfficientNet-V2 + DA), the model achieved 95.50%, 95.75%, 95.75%, and 95.75% for accuracy, precision, recall, and F1-score, respectively. These results indicate that the developed models performed better than the base models in all cases.
   

References

กัญญารัตน์ สมเพ็ชร, พัชรวิภา ใจจักรคำ, และอรอุมา เพียซ้าย. (2563). การจัดจำแนกชนิด และการใช้สารเคมีควบคุมเชื้อราRhizoctonia species สาเหตุโรคกาบใบแห้งของข้าว. วารสารวิทยาศาสตร์และนวัตกรรมการเกษตร, 51(2), 122-138.

จุฬาลักษณ์ มุ่งมาตร, ดุสิต อธินุวัฒน์, และวิลาวรรณ์ เชื้อบุญ. (2567). การยับยั้งเชื้อสาเหตุโรคใบไหม้และส่งเสริมการเจริญเติบโตของข้าวต่างพันธุ์ด้วยแบคทีเรีย. วารสารมหาวิทยาลัยราชภัฏร้อยเอ็ด: วิทยาศาสตร์และเทคโนโลยี, 5(2), 58-72.

Ahmad, R., Ansari, M. H., Thakur, M. B., Anwer, A., Singh, S. N., Kunal, G., Singh, P., Minnatullah, M. (2024). A review on emerging insights into bacterial leaf blight of rice: diagnostics, climate dynamics, and economic impact. Agricultural Mechanization in Asia, Africa and Latin America, 55(10), 19025-19044.

Bre, F., Gimenez, J. M., and Fachinotti, V. D. (2018). Prediction of wind pressure coefficients on building surfaces using artificial neural networks. Energy and Buildings, 158, 1429–1441.

Chen, M., Bai, Y., Lee, J. D., Zhao, T., Wang, H., Xiong, C., and Socher, R. (2020). Towards Understanding Hierarchical Learning: Benefits of Neural Representations. In the 34th Conference on Neural Information Processing Systems (NeurIPS) (pp.3114–3124). Vancouver: Canada.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. (2020). RandAugment: Practical automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp.702–703). Vancouver: Canada.

Dai, W., and Berleant, D. (2019). Benchmarking Contemporary Deep Learning Hardware and Frameworks: A Survey of Qualitative Metrics. In 2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI) (pp.148-155). Los Angeles, CA: USA.

Dutta, M., Sujan, R.I., Mojumdar, M. U., Chakraborty, N. R., Marouf, A. A., Rokne, J. G., and Alhajj, R. (2024). Rice Leaf Disease Classification A Comparative Approach Using Convolutional Neural Network (CNN), Cascading Autoencoder with Attention Residual U-Net (CAAR-U-Net), and MobileNet-V2 Architecture. Technologies 2024, 12(11), 1-15. doi: 10.3390/technologies12110214

Fawaiq, M. N., Utami, E., and Ariatmanto, D. (2023). Rice Plant Disease Detection with Data Augmentation Using Transfer Learning. International Journal of Research Publication and Reviews, 4(4), 2195-2199.

Haque, Md. E., Rahman, A., Junaeid, I. and Hoque, S. U. (2022). Rice Leaf Desease Classification and Detection Using YOLOV5. In International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp.516-522). Sydney, New South Wales: Australia.

Hossain, S.M.M., Deb, K., Dhar, P.K., and Koshiba, T. (2021). Plant Leaf Disease Recognition Using DepthWisSeparable Convolution-Based Models. Symmetry 2021, 13, 511. Retrieved from https://www.mdpi.com/2073-8994/13/3/511. doi.org/10.3390/sym13030511

Hou, Q., Zhou, D., and Feng, J. (2021). Coordinate Attention for Efficient Mobile Network Design. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13708-13717. Online. Retrieved from https://ieeexplore.ieee.org/xpl/conhome/9577055/proceeding?sortType=vol-onlyseq&isnumber=9577056&searchWithin=Coordinate%20Attention%20for%20Efficient%20 doi.org/10.1109/CVPR46437.2021.01350

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... Adam, H. (2017). MobileNets:

Efficient Convolutional Neural Networks for Mobile Vision Applications. Retrieved from https://www.researchgate.net/publication/316184205_MobileNets_Efficient_Convolutional_Neural_Networks_for_Mobile_Vision_Applications. doi.org/10.48550/arXiv.1704.04861

Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., ... Adam, H. (2019). Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (pp.1314-1324). Seoul: South Korea.

Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. (2018). Squeeze-and-Excitation Networks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp.7132-7141). Salt Lake City, Utah: USA.

Kanjanamaneesathian, M., Chumthong, A., Pengnoo, A., and Wiwattanapatapee, R. (2009). Bacillus megaterium Suppresses Major Thailand Rice Diseases. Asian Journal of Food and Agro-Industry, Special Issue, S154-S159.

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., and Terzopoulos, D. (2023). A Comprehensive Survey of Image Augmentation Techniques for Deep Learning. Pattern Recognition, 137, 109347. Retrieved from https://www.sciencedirect.com/science/article/pii/S0031320323000481.

doi.org/10.1016/j.patcog.2023.109347

Mumuni, A., and Mumuni, F. (2022). Data augmentation: A comprehensive survey of modern approaches. Array, 16, 1-27. doi: 10.1016/j.array.2022.100258

Rimi, S. A., Chowdhury, J. U., Abdullah, R., Ahmed, I., Mim, M. A., and Rahman, M. S. (2025). Empowering Agricultural Insights: RiceLeafBD - A Novel Dataset and Optimal Model Selection for Rice Leaf Disease Diagnosis through Transfer Learning Technique, 1-24. doi: 10.48550/arXiv.2501.08912

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L. C. (2018). MobileNetV2: Inverted Residuals

and Linear Bottlenecks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) (pp.4510-4520). Salt Lake City, Utah: USA.

Spadaro, D., Agustí, N., Ortega, S. F., and Hurtado Ruiz, M. A. (2020). Diagnostics and Identification of Diseases,

Insects and Mites. In Integrated Pest and Disease Management in Greenhouse Crops (pp.231–258). Cham: Switzerland.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015). Rethinking the Inception Architecture

for Computer Vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp.2818-2826). Las Vegas, NV: USA.

Tan, M., and Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.

In Proceedings of the 36th International Conference on Machine Learning (ICML) (pp.6105-6114). Long Beach: California.

Worasit, T., Phatrapornnant, T., Toojinda, T., Sinthupinyo, W., Kiratiratanapruk, K., Temniranrat, P., and Patarapuwadol, S. (2022). Rice bacterial blight and blast diseases recognition using deep learning techniques. Khon Kaen Agriculture Journal, 50(1), 216-228.

Xu, M., Park, J.-E., Lee, J., Yang, J., and Yoon, S. (2024). Plant disease recognition datasets in the age of deep learning: Challenges and opportunities. Frontiers in Plant Science, 15, 1-13. doi: 10.3389/fpls.2024.1452551

Yang, S., Liu, X., Dong, X., and Fu, B. (2024). Mini-DA: Improving Your Model Performance through Minimal Data Augmentation using LLM. In Proceedings of the Fifth Workshop on Data Science with Human- in-the-Loop (Language Advances) (pp.25–30). Mexico City: Mexico.

Downloads

Published

2025-10-07