Heat Transfer Characteristic Study of Solar Collector integrated with/without Phase Change Material (RT42) Solar thermal
Main Article Content
Abstract
This research aims to investigate the heat transfer phenomenon of a solar collector integrated with a phase change material (PCM). The various experiments are tested in different riser sizes, including a 16 mm tube (PCM1), a 10 mm tube (PCM2) that filled with PCM RT42, and a riser tube without PCM (conventional solar collector). These case studies are tested with different mass flow rates of 0.01, 0.02, and 0.03 kg/s∙m2, respectively, following ASHRAE 93-2003 standard condition used to analyze the collector system's thermal performance and heat transfer characteristics. Using PCM, the solar collector heat gains investigation reveals that the input temperature is adjusted low, resulting in significant energy absorption and minimal heat loss. The standard condition tested is setting the input temperature slightly higher, which revealed that the heat gain of the solar collector decreased while the heat loss increased under the limit ambient temperature. Both solar collectors with PCM (PCM1 and PCM2) are given the thermal performance represented by FR(τα)e, and FRUL gets higher than the conventional collector (without PCM). The highest thermal performance was achieved at a mass flow rate of 0.03 kg/s∙m2, following the same pattern as the changing convective heat transfer coefficient. The maximum convective heat transfer coefficient value is 131.06 W/m2⸱K of PCM1 while followed by PCM2 and without PCM, respectively. In addition, the empirical correlation equation for predicting the convective heat transfer coefficient of solar collectors integrated with PCM was presented.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Balaji, K., Iniyan, S., & Goic R. (2018). Thermal performance of solar water heater using velocity enhancer. Renewable Energy, 115, 887-895. https://doi.org/10.1016/j.renene.2017.09.014
Balaji, K., Iniyan, S., & Muthusamyswami, V. (2017). Experimental investigation on heat transfer and pumping power of forced circulation flat plate solar collector using heat transfer enhancer in absorber tube. Applied Thermal Engineering, 112, 237-247. https://doi.org/10.1016/j.applthermaleng.2016.09.074
Duffie, John A., and William A. Beckman. (2013). Solar engineering of thermal processes. New Jersey: Wiley.
Eiamsa-ard, S., & Seemawute. P. (2012). Decaying swirl flow in round tubes with short-length twisted tapes. International Communications in Heat and Mass Transfer, 39(5), 649-656. https://doi.org/10.1016/j.icheatmasstransfer.2012.03.021
García, A., Martin, R. H., & Pérez-García, J. (2013). Experimental study of heat transfer enhancement in a flat-plate solar water collector with wire-coil inserts. Applied Thermal Engineering, 61(2), 461-468. https://doi.org/10.1016/j.applthermaleng.2013.07.048
Gautam, A., Chamoli , S., Kumar, A., & Singh, S. (2017). A review on technical improvements, economic feasibility and world scenario of solar water heating system. Renewable and Sustainable Energy Reviews, 68(1), 541-562. https://doi.org/10.1016/j.rser.2016.09.104
Gond, B. K., Gaur, M. K., & and Malvi, C. S. (2012). Manufacturing and performance analysis of solar flat plate collector with phase change material. International Journal of Emerging Technology and Advanced Engineering, 2(3), 456-459. https://ijetae.com/files/Volume2Issue3/IJETAE_0312_78.pdf
Malvi, C. S., Gupta, A., Gaur, M. K., Crook, R., & Dixon-Hardy, D. W. (2017). Experimental investigation of heat removal factor in solar flat plate collector for various flow configurations. International Journal of Green Energy, 14(4), 442-448. https://doi.org/10.1080/15435075.2016.1268619
Jaisankar, S., Radhakrishnan, T. K., & Sheeba, K. N. (2009). Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of twisted tapes. Applied Thermal Engineering, 29(5), 1224-1231. http://www.rericjournal.ait.ac.th/index.php/reric/article/download/486/303
Kalogirou, S. A. (2014). Flat-plate collector construction and system configuration to optimize the thermosiphonic effect. Renewable Energy, 67 202-206. https://doi.org/10.1016/j.renene.2013.11.021
Khalifa, A. J. N., & Jabbar, R. A. A. (2010). Conventional versus storage domestic solar hot water systems: A comparative performance study. Energy Conversion and Management, 51(2), 265-270. https://doi.org/10.1016/j.enconman.2009.09.021
Khalifa, A. J. N., Suffer, K. H., & Mahmoud, M. Sh. (2013). A storage domestic solar hot water system with a back layer of phase change material. Experimental Thermal and Fluid Science, 44, 174-181. https://doi.org/10.1016/j.expthermflusci.2012.05.017
Lin, S. C., Al-Kayiem, H. H., & Aris, M. S. B. (2012). Experimental investigation on the performance enhancement of integrated PCM-flat plate solar collector. Journal of Applied Sciences, 12(24), 2390-2396. https://doi.org/10.3923/jas.2012.2390.2396
Muhammad M. J., Mahmud S. A., Sidik, N. A. C., Yazid, M. N. A. W. M., Mamat, R., & Najafi, G. (2016). The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review. Renewable and Sustainable Energy Reviews, 63, 226-236. https://doi.org/10.1016/j.rser.2016.05.063
Murugan, M., Vijayan, R., Saravanan, A., & Jaisankar, S. (2019). Performance enhancement of centrally finned twist inserted solar collector using corrugated booster reflectors. Energy, 168, 858-869. https://doi.org/10.1016/j.energy.2018.11.134
Papadimitratos, A., Sobhansarbandi, S., Pozdin, V., Zachidov, A., & Hassanipour, F. (2016). Evacuated tube solar collectors integrated with phase change materials. Solar Energy, 129, 10-19. https://doi.org/10.1016/j.solener.2015.12.040
Polvingsri, S., & Kiatsiriroat, T.(2014). Performance analysis of flat-plate solar collector having silver nanofluid as a working fluid. Heat Transfer Engineering, 35(13), 1183-1191. https://doi.org/10.1080/01457632.2013.870003
Polvongsri, S. (2013). Ashrae Standard 93-2003 Methods of Testing to Determine the Thermal Performance of Flat-Plate Solar Collectors. School of Renewable Energy Maejo University. 5-9.
Sandhu, G., Siddiqui, K., & Garcia, A. (2014). Experimental study on the combined effects of inclination angle and insert devices on the performance of a flat-plate solar collector. International Journal of Heat and Mass Transfer, 71, 251-263. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.004
Saravanan, A., Senthilkumaar, J. S., & Jaisankar, S. (2016). Experimental studies on heat transfer and friction factor characteristics of twist inserted V-trough thermosyphon solar water heating system. Energy, 112, 642-654. https://doi.org/10.1016/j.energy.2016.06.103
Sharafeldin, M. A., & Gróf, G. (2018). Experimental investigation of flat plate solar collector using CeO2-water nanofluid. Energy Conversion and Management, 155, 32-41. https://doi.org/10.1016/j.enconman.2017.10.070
Sharafeldin, M. A., Gróf, G., & Mahian, O. (2017). Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids. Energy, (141), 2436-2444. https://doi.org/10.1016/j.energy.2017.11.068
Sharples, S., & Charlesworth, P. S. (1998). Full-scale measurements of wind-induced convective heat transfer from a roof-mounted flat plate solar collector. Solar Energy, 62(2), 69-77. https://doi.org/10.1016/S0038-092X(97)00119-9
Wu, W., Dai, S., Liu, Z., Dou, Y., Hua, J., Li, M., Wang X., & Wang X. (2018). Experimental study on the performance of a novel solar water heating system with and without PCM. Solar Energy, 171, 604-612. https://doi.org/10.1016/j.solener.2018.07.005
Yang, X., Sun, L., Yuan, Y., Zhao, X., & Cao, X. (2018). Experimental investigation on performance comparison of PV/T-PCM system and PV/T system. Renewable Energy, 119, 152-159. https://doi.org/10.1016/j.renene.2017.11.094