ประสิทธิภาพของ Cs2AgBiBr6, Rb2CuCl3, Rb2CuBr3 และ (C38H34P2) MnBr4 ซิลทิลเลเตอร์ ต่อการกำบังรังสีเอกซ์ โปรตอน และแอลฟา The Effective of some Scintillators for X–Ray Proton and Alpha Particles Shielding

Main Article Content

kittisak sriwongsa

Abstract

งานวิจัยนี้ได้ศึกษาสมบัติการกำบังรังสีไอออไนซ์ชนิดที่ไม่มีประจุไฟฟ้า (รังสีเอกซ์) และมีประจุไฟฟ้า (อนุภาคโปรตอน และอนุภาคแอลฟา) ของซิลทิลเลเตอร์ ได้แก่ Cs2AgBiBr6, Rb2CuCl3, Rb2CuBr3 และ (C38H34P2) MnBr4 โดยค่าพารามิเตอร์สำหรับการกำบังรังสีไอออไนซ์ชนิดที่ไม่มีประจุไฟฟ้า ได้แก่ ค่าสัมประสิทธิ์การลดทอนเชิงมวล และเลขอะตอมยังผล ที่ช่วงพลังงาน 8.91 x 10–3–5.04 x 10–1 เมกกะอิเล็กตรอนโวลต์ ในขณะที่การกำบังรังสีไอออไนซ์ชนิดที่มีประจุไฟฟ้าได้แก่ อนุภาคโปรตอน และอนุภาคแอลฟา จำนวนประมาณ 104 ไอออน ที่เคลื่อนที่ผ่านเข้าไปในผลึกซิลทิลเลเตอร์ทั้งสี่ที่ความหนา 1 ไมโครเมตร ซึ่งพารามิเตอร์ที่นำมาวิเคราะห์ ได้แก่ การกระจายตัวของไอออนและค่าไอออนกระเจิงกลับที่พลังงานจลน์ 10 กิโลอิเล็กตรอนโวลต์ และอำนาจศักย์หยุดยั้งมวลที่ช่วงพลังงานจลน์ของอนุภาค 0.01–10 เมกกะอิเล็กตรอนโวลต์ ผลที่ได้พบว่าของผลึกซิลทิลเลเตอร์ Cs2AgBiBr6 มีค่าสัมประสิทธิ์การลดทอนเชิงมวลและเลขอะตอมยังผลสูงสุดนั่นแสดงให้เห็นว่าตัวอย่างนี้เป็นวัสดุกำบังรังสีดีที่สุด นอกจากนี้ผลึกซิลทิลเลเตอร์ Cs2AgBiBr6 ยังมีการดูดกลืนอนุภาคโปรตอนและอนุภาคแอลฟาได้ดีที่สุดทำให้ผลึกซิลทิลเลเตอร์ Cs2AgBiBr6 มีประสิทธิภาพในการกำบังรังสีไอออไนซ์ชนิดที่ไม่มีประจุไฟฟ้าและมีประจุไฟฟ้าดีที่สุด

Article Details

Section
บทความวิจัย

References

Agar, O., Kavaz, E., Altunsoy, E. E., Kilicoglu, O., Tekin, H. O., Sayyed, M. I., Erguzel, T. T., & Tarhan, N. (2019). Er2O3 effects on photon and neutron shielding properties of TeO2-Li2O-ZnO-Nb2O5 glass system. Results in Physics, 13, 102277. https://doi.org/10.1016/j.rinp.2019.102277

Birowosuto, M.D., Cortecchia, D., Drozdowski, W., Brylew, K., Lachmanski, W., Bruno, A., & Soci, C. (2016). X-ray scintillation in lead halide perovskite crystals. Scientific Reports, 6, 37254. https://doi.org/10.1038/srep37254

Cao, F., Yu, D., Ma, W., Xu, X., Cai, B., Yang, Y.M., Liu, S., He, L., Ke, Y., Lan, S., Choy, K.L., & Zeng, H. (2019). Shining emitter in stable host: design halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano, 14, 5183-5193. https://doi.org/10.1021/acsnano.9b06114

Chen, Q., Wu, J., Ou, X., Huang, B., Almutlaq, J., Zhumekenov, A.A., Guan, X., Han, S., Liang, L., Yi, Z., Juan Li, Xie, X., Wang, Y., Li, Y., Fan, D., Teh, D.B.L., All, A.H., Mohammed, O.F., Bakr, O.M., Wu, T., Bettinelli, M., Yang, H., Huang, W., & Liu, X. (2018). All-inorganic perovskite nanocrystal scintillators. Nature, 561, 88-93. https://doi.org/10.1038/s41586-018-0451-1

Dhal, S., Patro, A., Swain, M., Supraja, K., & Rath, P. K. (2020). Simulation of very-low energy alkali ion ( 10 KeV) induced effects on Al2O3 micro flakes. Indian Journal of Science and Technology, 13(21), 2111-2118. https://doi.org/10.17485/IJST/v13i21.97

Dong, M. G, Sayyed, M. I., Lakshminarayana, G., Ersundu, M. Ç., Ersundu, A. E., Nayar, P., & Mahdi, M. A. (2017). Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. Journal of Non-Crystalline Solids, 468, 12-16. https://doi.org/10.1016/j.jnoncrysol.2017.04.018

Heiss, W., & Brabec, C. (2016). X-ray imaging: perovskites target X-ray detection. Nature Photonics, 10, 288-289. https://doi.org/10.1038/nphoton.2016.54

Heo, J. H., Shin, D. H., Park, J. K., Kim, D. H., Lee, S. J., & Im, S. H. (2018). High-performance next- generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Advanced Materials, 30(40), 1801743. https://doi.org/10.1002/adma.201801743

Intom, S., Kalkornsurapranee, E., Johns, J., Kaewjaeng, S., Kothan, S., Hongtong, W., Chaiphaksa, W., & Kaewkhao, J. (2020). Mechanical and radiation shielding properties of flexible material based on natural rubber/ Bi2O3 composites. Radiation Physics and Chemistry, 172, 108772. https://doi.org/10.1016/j.radphyschem.2020.108772

Issa, S. A. M., & Mostafa, A. M. A. (2017). Effect of Bi2O3 in borate-tellurite-silicate glass system for development of gamma-rays shielding materials. Journal of Alloys and Compounds, 695, 302-310. https://doi.org/10.1016/j.jallcom.2016.10.207

Kaur, P., Singh, D., & Singh, T. (2018). Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses. Radiation Physics and Chemistry, 144, 336-343. https://doi.org/10.1016/j.radphyschem.2017.09.018

Kilicoglu, O., Altunsoy. E. E., Agar, O., Kamislioglu, M., Sayyed, M. I., Tekin, H. O., & Tarhan, N. (2019). Synergistic effect of La2O3 on mass stopping power (MSP)/projected range (PR) and nuclear radiation shielding abilities of silicate glasses. Results in Physics, 14, 102424. https://doi.org/10.1016/j.rinp.2019.102424

Kim, Y. C., Kim, K. H., Son, D. Y., Jeong, D. N., Seo, J. Y., Choi, Y. S., Han, I. T., Lee, S. Y., & Nam-Gyu Park, N. P. (2017). Printable organometallic perovskite enables large-area, low dose X-ray imaging. Nature, 550, 87-91. https://doi.org/10.1038/nature24032

Kirdsiri, K., Kaewkhao, J., & Limsuwan, P. (2012). Photon interaction in borate glass doped with Bi2O3 at different energies. Procedia Engineering, 32, 727-733. https://doi.org/10.1016/j.proeng.2012.02.004

Kramer, K. W., Dorenbos, P., Gudel, H. U., & Eijk Van, C.W.E. (2006). Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials. Journal of Materials Chemistry, 16, 2773-2780. https://doi.org/10.1039/B602762H

Lecoq, P. (2016). Development of new scintillators for medical applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 809, 130-139. https://doi.org/10.1016/j.nima.2015.08.041

Limkitjaroenporna, P., Kaewkhaoa, J., Chewpraditkuld, W., & Limsuwan, P. (2012). Mass attenuation coefficient and effective atomic number of Ag/Cu/Zn alloy at different photon energy by Compton scattering technique. Procedia Engineering, 32, 847-854. https://doi.org/10.1016/j.proeng.2012.02.022

Liu, J., Shabbir, B., Wang, C., Wan, T., Ou, Q., Yu, P., Tadich, A., Jiao, X., Chu, D., Qi, D., Li, D., Kan, R., Huang, Y., Dong, Y., Jasieniak, J., Zhang, Y., & Bao, Q. (2019). Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Advanced Materials, 31(30), 1901644. https://doi.org/10.1002/adma.201901644

Morad, V., Shynkarenko, Y., Yakunin, S., Brumberg, A., Schaller, R. D., & Kovalenko, M.V. (2019). Disphenoidal zero-dimensional lead, tin, and germanium halides: Highly emissive singlet and triplet self-trapped excitons and X-ray scintillation. Journal of American Chemical Society, 141, 9764-9768. https://doi.org/10.1021/jacs.9b02365

Mykhaylyk, V. B., Kraus, H., & Saliba, M. (2019). Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperatures. Materials Horizons, 6(8), 1740-1747. https://pubs.rsc.org/en/content/articlelanding/2019/mh/c9mh00281b

Olarinoye, I. O., El-Agawany, F. I., El-Adawy, A., Yousef, E. A., & Rammah, Y. S. (2020). Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceramics International, 46(14), 23134-23144. https://doi.org/10.1016/j.ceramint.2020.06.093

Pan, W., Wu, H., Luo, J., Deng, Z., Ge, C., Chen, C., Jiang, X., Yin, W. J., Niu, G., Zhu, L., Yin, L., Zhou, Y., Xie, Q., Ke, X., Sui, M., & Tang, J. (2017). Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 11, 726-732. https://doi.org/10.1038/s41566-017-0012-4

Pan, W., Yang, B., Niu, G., Xue, K. H., Du, X., Yin, L., Zhang, M., Wu, H., Miao, X. S., & Tang, J. (2019). Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Advanced Materials, 31(44), 1904405. https://doi.org/10.1002/adma.201904405

Rammah, Y. S., El-Agawany, F. I., Gamal, A., Olarinoye, I. O., Ahmed, E. M., & Abouhaswa, A. S. (2021). Responsibility of Bi2O3 content in photon, alpha, proton, fast and thermal neutron shielding capacity and elastic moduli of ZnO/B2O3/Bi2O3 glasses. Journal of Inorganic and Organometallic Polymers and Materials, 31(8), 3505-3524. https://doi.org/10.1007/s10904-021-01976-5

Shrestha, S., Fischer, R., Matt, G. J., Feldner, P., Michel, T., Osvet, A., Levchuk, I., Merle, B., Golkar, S., Chen, H., Tedde, S. F., Schmidt, O., Hock, R., Rührig, M., Göken, M., Heiss, W., Anton, G., & Brabec, C.J. (2017). High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nature Photonics, 11, 436-440. https://doi.org/10.1038/NPHOTON.2017.94

Stoumpos, C. C., Malliakas, c. D., Peters, J. A., Liu, Z., Sebastian, M., Im, J., Wibowo, T. C., Chung, D. Y., Freeman, A. J., Wessels, B. W., & Kanatzidis, M. G. (2013). Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection. Crystal Growth & Design, 13(7), 2722-2727. https://doi.org/10.1021/cg400645t

Thomas, G. A., & Symonds, P. (2016). Radiation exposure and health effects-Is it time to reassess the real consequences?. Clinical Oncology, 28(4), 231-236. https://doi.org/10.1016/j.clon.2016.01.007

Wang, L., Fu, K., Sun, R., Lian, H., Hu, X., & Zhang, Y. (2019). Ultra-stable CsPbBr3 perovskite nanosheets for X-ray imaging screen. Nano-Micro Letters, 11(1), 52. https://doi.org/10.1007/s40820-019-0283-z

Weber, M.J. (2002). Inorganic scintillators: today and tomorrow. Journal of Luminescence, 100, 35-45. https://doi.org/10.1016/S0022-2313(02)00423-4

Wei, H., Fang, Y., Mulligan, P., Chuirazzi, W., Fang, H.H., Wang, C., Ecker, B.r., Gao, Y., Loi, M.A., Cao, L., & Huang, J. (2016). Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 10, 333-339. https://doi.org/10.1038/nphoton.2016.41

Wei, H., & Huang, J. (2019). Halide lead perovskites for ionizing radiation detection. Nature Communication, 10, 1066. https://doi.org/10.1038/s41467-019-08981-w

Wei, W., Zhang, Y., Xu, Q., Wei, H., Fang, Y., Wang, Q., Deng, Y., Li, Y., Gruverman, A., Cao, L., & Huang, J. (2017). Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics, 11, 315-321. https://doi.org/10.1038/nphoton.2017.43

Xu, L.J., Lin, X., He, Q., Worku, M., & Ma, B. (2020). Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nature Communications, 11, 4329. https://doi.org/10.1038/s41467-020-18119-y

Yakunin, S., Sytnyk, M., Kriegner, D., Shrestha, S., Richter, M., Matt, G. J., Azimi, H., Brabec, C. J., Stangl, J., Kovalenko, M. V., & Heiss, W. (2015). Detection of X-ray photons by solution-processed lead halide perovskites. Nature Photonics, 9, 444-449. https://doi.org/10.1038/nphoton.2015.82

Yang, B., Yin, L., Niu, G., Yuan, J. H., Xue, K. H., Tan, Z., Miao, X. S., Niu, M., Du, X., Song, H., Lifshitz, E., & Tang, J. (2019). Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Advanced Materials, 31, 1904711. https://doi.org/10.1002/adma.201904711

Zhao, X., Niu, G., Zhu, J., Yang, B., Yuan, J. H., Li, S., Gao, W., Hu, Q., Yin, L., Xue, K. H., Lifshitz, E., Miao, X., & Tang, J. (2020). All-inorganic copper halide as a stable and self-absorption-free X-ray scintillator. The Journal of Physical Chemistry Letters, 11, 1873-1880. https://doi.org/10.1021/acs.jpclett.0c00161

Zhou, C., Lin, H., He, Q., Xu, L., Worku, M., Chaaban, M., Lee, S., Shi, X., Du, M. H., & Ma, B. (2019). Low dimensional metal halide perovskites and hybrids. Materials Science and Engineering: R: Reports, 137, 38-65. https://doi.org/10.1016/J.MSER.2018.12.001

Zhou, C., Lin, H., Tian, Y., Yuan, Z., Clark, R., Chen, B., Van De Burgt, L. J., Wang, J. C., Zhou, Y.,

Hanson, K., Meisner, Q. J., Neu, J., Besara, T., Siegrist, T., Lambers, E., Djurovich, P., & Ma. B. (2018). Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science, 9, 586-593. https://doi.org/10.1039/C7SC04539E

Zhou, C., Tian, Y., Wang, M., Rose, A., Besara, T., Doyle, N. K., Yuan, Z., Wang, J. C., Clark, R., Hu, Y., Siegrist, T., Lin, S., & Biwu Ma. B. (2017). Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angewandte Chemie International Edition, 56(31), 9018-9022. https://doi.org/10.1002/anie.201702825

Zhou, C., Worku, M., Neu, J., Lin, H., tian, Y., Sujin Lee, Zhou, Y., Han, D., Chen, S., Hao, A., Djurovich, P. I., Siegrist, T., Du, M. H., & Ma, B. (2018). Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency. Chemistry of Materials, 30, 2374–2378. https://doi.org/10.1021/acs.chemmater.8b00129

Zhuravleva, M., Friedrich, S., & Melcher, C. L. (2012). Praseodymium valence determination in Lu2SiO5, Y2SiO5, and Lu3Al5O12 scintillators by x-ray absorption spectroscopy. Applied Physics Letters, 101, 101902. https://doi.org/10.1063/1.4748168