On the Odd and Even Terms of (p,q) - Fibonacci Number and (p,q) - Lucas Number

Main Article Content

Alongkot Suvarnamani


We consider the  - Fibonacci sequence and the  - Lucas sequence. By using the Binet’s formulas, we get some properties of the odd and even terms of the  -Fibonacci number and the  - Lucas number.

Article Details

Author Biography

Alongkot Suvarnamani, Rajamangala University of Technology Thanyaburi


S. Falcon and A. Plaza, On the Fibonacci k-numbers, Chaos, Solitons and Fractals, 32 (2007): 1615 - 1624.

S. Falcon and A. Plaza, The k-Fibonacci Sequence and the Pascal 2-Triangle, Chaos, Solitons and Fractals, 33 (2007): 38 - 49.

S. Falcon and A. Plaza, On the 3-Dimensional k-Fibonacci Spiral, Chaos, Solitons and Fractals, 38 (2008): 993 - 1003.

A. Suvarnamani and M. Tatong, Some Properties of (p,q) - Fibonacci Numbers, Science and Technology RMUTT Journal, 5 (2) (2015): 17 - 21.

A. Suvarnamani, Some Properties of (p,q) - Lucas Number, Kyungpook Mathematical Journal, 56 (2016): 367 - 370.