Study of Vero Cell Attachment and Growth in A Modified Serum-Free Medium (SFM01-M) Supplementing with Different Concentrations of Vitamin C

Main Article Content

Mancoh Posung, et al

Abstract

New and reused tissue culture flasks (T-flasks) without precoating with adhesion factors (e.g. fibronectin, laminin, collagen) were used to subculture Vero cells for 3 passages (P1, P2, P3) by using a modified serum-free medium (SFM01-M). A comparison of the cell yields obtained from those passages of new or reused T-flask cultures was not significantly different. The effect of vitamin C on Vero cell growth showed that the cell yields obtained from SFM01-M supplemented with 25-50 mg/L of vitamin C significantly decreased in contrast to those obtained from a lower concentration. The analysis of secreted proteins using SDS-PAGE in SFM01-M supplemented with different concentrations of vitamin C (0, 10, 25, 50 mg/L) during the first 24 h of cultures showed that all cultures gave the similar protein bands with a molecular weight (MW) of approximately 146 kDa. This protein band specifically reacted with monoclonal anti-collagen type I using a direct enzyme-linked immunosorbent assay (ELISA). In microcarrier culture, the attachment of Vero cells on CytodexTM1 microcarriers could be observed as spherical shape during the first 3 h of culture. The maximum cell concentration was 14.90 ± 0.56 x 104 cells/mL at day 6 of culture. From this study, the attachment and growth of Vero cells on new and reused T-flasks including on CytodexTM1 microcarriers can be achieved by using SFM01-M.

Article Details

Section
บทความวิจัย

References

Arigony, A. L. A., De Oliveira, I. M., Machado, M., Bordin, D. L., Bergter, L., Prá, D. & Henriques, J. A. P. (2013). The influence of Micronutrients in Cell Culture: A Reflection on Viability and Genomic Stability. BioMed. Res. Int., 2013, 1-22.

Butler, M. (1996). Animal Cell Culture and Technology-The Basics (1st edition). Oxford University Press. New York

Chen, Z., Ke, Y. & Chen, Y. (1993). A serum-free medium for hybridoma cell culture. Cytotechnology, 11, 169-174.

Chun, B. H., Kim, J. H., Lee, H. J. & Chung, N. (2007). Usability of size-excluded fractions of soy protein hydrolysates for growth and viability of Chinese hamster ovary cells in protein-free suspension culture. BioresourTechnol., 98, 1000-1005.

Eto, N., Yamada, K., Shito, T., Shirahata, S. & Murakami, H. (1991). Development of a Protein-Free Medium with Ferric Citrate Substituting Transferrin for the Cultivation of Mouse-Mouse Hybridomas. Agri. Biol. Chem., 55, 863-865.

Franĕk, F., Hohenwarter, O. & Katinger, H. (2000). Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnol. Prog., 16, 688-692.

Freshney, I. (2010). Culture of Animal Cells-A Manual of Basic Technique and Specialized Applications (6th edition). John Wiley & Sons, Inc. New Jersey.

GE Healthcare Bio-Sciences (AB). (2005). Microcarrier Cell Culture-Principles and Methods. GE Healthcare Bio-Sciences (AB). Uppsala, Sweden.

Heidemann, R., Zhang, C., Qi, H., Rule, J. L., Rozales, C., Park, S., Chuppa, S., Ray, M., Michaels, J., Konstantin, K. & Naveh, D. (2000). The use of peptones as medium additives for the production of a recombinant therapeutic protein in high density perfusion cultures of mammalian cells. Cytotechnology, 32, 157-167.

Heino, J. (2007). The collagen family members as cell adhesion proteins. BioEssays, 29, 1001-1010.

Hewlett, G. (1991). Strategies for optimising serum-free media. Cytotechnology, 5, 3-14.

Jan, D C H., Jones, S. J., Emery, A. N. & Al-Rubeai, M. (1994). Peptone, a low cost growth-promoting nutrient for intensive animal cell culture. Cytotechnology, 16, 17-26.

Kao, J., Huey, G., Kao, R. & Stern, R. (1990). Ascorbic Acid Stimulates Production of Glycosaminoglycans in Cultured Fibroblasts. Exp. Mol. Pathol., 53, 1-10.

Keen, M. J. & Rapson, N. T. (1995). Development of a serum-free medium for the large scale production of recombinant protein from a Chinese hamster ovary cell line. Cytotechnology, 17, 153-163.

Kishimoto, Y., Saito, N., Kurita, K., Shimokado, K., Maruyama, N. & Ishigami, A. (2013). Ascorbic acid enhances the expression of type 1 and type 4 collagen and SVCT2 in cultured human skin fibroblasts. Biochem. Bioph. Res. Co., 430, 579-584.

Kovář, J. & Franĕk, F. (1989). Growth-Stimulating Effect of Transferrin on a Hybridoma Cell Line: Relation to Transferrin Iron-Transporting Function. Exp. Cell. Res., 182, 358-369.

Lobo-Alfonso, J., Price, P. & Jayme, D. (2010). Benefits and Limitation of Protein Hydrolysates as Components of Serum-Free Media for Animal Cell Culture Applications. Springer Science + Business Media, Berlin.

Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Scott, M. P., Bretscher, A., Ploegh, H. & Matsudaira, P. (2008). Molecular Cell Biology (6th edition). W. H. Freeman and Company. New York.

Michiels, J. F., Barbau, J., De Boel, S., Dessy, S., Agathos, S. N. & Schneider, Y. J. (2011). Characterisation of beneficial and detrimental effects of a soy peptone, as an additive for CHO cell cultivation. Process Biochem., 46, 671-681.

Murakami, H., Masui, H., Sato, G. H., Sueoka, N., Chow, T. P. & Kano-Sueoka, T. (1982). Growth of hybridoma cells in serum-free medium: ethanolamine is an essential component. Proc. Natl. Acad. Sci. USA, 79, 1158-1162.

Ohkura, K., Fujii, T., Konishi, R. & Terada, T. (1990). Increased Attachment and Confluence of Skin Epidermal Cells in Culture Induced by Ascorbic Acid: Detection by Permeation of Trypan Blue across Cultured Cell Layers. CELL STRUCT. FUNCT., 15, 143-150.

Okamoto, T., Tani, R., Yabumoto, M., Sakamoto, A., Takada, K., Sato, G. H. & Sato, J. D. (1996). Effects of insulin and transferrin on the generation of lymphokine-activated killer cells in serum-free medium. J. Immunol. Methods, 195, 7-14.

Petiot, E., Guedon, E., Blanchard, F., Gény, C., Pinton, H. & Marc, A. (2010). Kinetic characterization of Vero cell metabolism in a serum-free batch culture process. Biotechnol. Bioeng., 107, 143-153.

Posung, M., Tongta, A. & Promkhatkaew, D. (2016a). A Modified Serum-Free Medium Development for Vero Cell Cultures. In: The National and International Graduate Research Conference 2016, Khon Kaen, Thailand, 1339-1348.

Posung, M., Promkhatkaew, D. & Tongta, A. (2016b). Study of Vero Cell Growth in A Modified Serum-Free Medium (SFM01-M). NSRU Scien. Technol. J., 8, 89-104.

Quesney, S., Marc, A., Gerdil, C., Gimenez, C., Marvel, J., Richard, Y. & Meignier, B. (2003). Kinetics and metabolic specificities of Vero cells in bioreactor cultures with serum-free medium. Cytotechnology, 42, 1-11.

Rourou, S., Van der Ark, A., Van der Velden, T. & Kallel, H. (2009). Development of an Animal-Component Free Medium for Vero Cells Culture. Biotechnol. Prog., 25, 1752-1761.

Santos, A. R. Jr., Barbanti S. H., Duek E. A. R., Dolder, H., Wada, R. S. & Wada, M. L. F. (2001). Vero Cell Growth and Differentiation on Poly (L-Lactic Acid) Membranes of Different Pore Diameters. Artif. Organs., 25, 7-13.

Santos A. R. Jr., Ferreira, B. M. P., Duek, E. A. R., Dolder, H., Wada, R. S. & Wada, M. L. F. (2004). Differentiation Pattern of Vero Cells Cultured on Poly (L-Lactic Acid)/Poly (Hydroxybutyrate-co-Hydroxyvalerate) Blends. Artif. Organs., 28(4), 381-389.

Sung, Y. H., Lim, S. W., Chung, J. Y. & Lee, G. M. (2004). Yeast hydrolysate as a low-cost additive to serum-free medium for the production of human thrombopoietin in suspension cultures of Chinese hamster ovary cells. Appl. Microbiol. Biotechnol., 63, 527-536.

Taub, M., Chuman, L., Saier, M. H. & Sato, G. (1979). Growth of Madin-Darby Canine Kidney Epithelial Cell (MDCK) Line in Hormone-Supplemented, Serum-Free Medium. Proc. Natl. Acad. Sci. USA, 76, 3338-3342.

World Health Organization. (1998). Requirements for the use of animal cells as in vitro substrates for the production of biological. WHO Technical Report Series, 878, 20-55 (Annex 1).

Yue, B. Y. J. T., Higginbotham, E. J. & Chang, I. L. (1990). Ascorbic Acid Modulate the Production of Fibronectin and Laminin by Cells from an Eye Tissue-Trabecular Meshwork. Exp. Cell Res., 187, 65-68.