การวิเคราะห์การมีส่วนร่วมของนักเรียนในห้องเรียนออนไลน์ โดยใช้ Convolutional Neural Networks (CNN)

Main Article Content

พงษ์ศธร เชิดสม
วนิดา แก่นอากาศ

บทคัดย่อ

การระบาดของเชื้อไวรัสโคโรนา (COVID-19) ส่งผลกระทบในภาคการศึกษา เช่น การเรียนจาก ห้องเรียนปกติสู่ห้องเรียนออนไลน์ ทำให้การติดตามการมีส่วนร่วมในห้องเรียนออนไลน์เป็นไปด้วยความ ยากลำบาก นอกจากจะส่งผลต่อประสิทธิภาพของผู้เรียนแล้ว กรณีที่ร้ายแรงที่สุดที่อาจจะเกิดขึ้นคือการ หลุดจากการศึกษาของผู้เรียน เพื่อให้ผู้สอนได้ทราบถึงการมีส่วนร่วมของผู้เรียนและสามารถปรับเปลี่ยน การการเรียนการสอนให้เหมาะสมกับสถาพแวดล้อมในการเรียนออนไลน์ บทความนี้จึงได้นำเสนอการพัฒนาแบบจำลองที่ใช้ในการตรวจสอบการมีส่วนร่วมในชั้นเรียน ออนไลน์โดยใช้โครงข่ายประสาทเทียมแบบคอนโวลูชัน (Convolutional Neural Networks : CNN) ที่ใช้ใบหน้าของผู้เรียนในการตรวจจับอารมณ์และเชื่อมโยงเป็นระดับการมีส่วนร่วม 3 ระดับ คือ ไม่มีส่วนร่วม มีส่วนร่วมระดับปกติ มีส่วนร่วมระดับสูง ซึ่งได้ทำการปรับแต่งพารามิเตอร์ได้แก่ Learning Rate, Batch Size, Optimizer รวมทั้งการปรับแต่งในชั้นของการทำ Feature extraction และชั้นของ การทำ Fully connected ซึ่งได้นำโครงสร้างแบบจำลองจากเว็บไซต์ Keras (Simple MNIST convnet) เป็นโครงสร้างแบบจำลองตั้งต้น ได้แบ่งการทดลองออกเป็น 3 กลุ่ม ได้แก่ กลุ่มที่ 1 คือ การปรับแต่ง โครงสร้างชั้นการสกัดคุณลักษณะเด่นของภาพ (Feature extraction) กลุ่มที่ 2 คือ การทดลองแต่ละ พารามิเตอร์ ได้แก่ Learning Rate (LR), Batch Size (BZ), Optimizer (OTM), Fully connected (FC) กลุ่มที่ 3 คือ การทดลองจับคู่ 2 พารามิเตอร์ ซึ่งได้ทดลองกลุ่มที่ 1-3 ตามลำดับ และเป็นการนำแบบ จำลองจากกลุ่มการทดลองก่อนหน้าที่ได้ผลดีที่สุดมาทำการเพิ่มพารามิเตอร์ต่อในกลุ่มการทดลองถัดไป ผลการประเมินประสิทธิภาพแบบจำลองการใช้และการปรับแต่ง Optimizer Ranger ร่วมกับ Fully Connected (FC) จำนวนชั้น 2 ชั้นคือ 50 และ 100 ให้ประสิทธิภาพดีที่สุดคือ 82.30 (Accuracy) และค่าความสูญเสียคือ 0.46 (Loss) ซึ่งมีค่าความแม่นยำเพิ่มขึ้น 16.51 และมีค่าความสูญเสียลดลง 0.31 เมื่อเทียบกับแบบจำลองตั้งต้น

Article Details

บท
บทความวิจัย

References

World Health Organization: WHO. (12 October 2020). Q&A on coronaviruses (COVID-19). [Online] Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/

COVID-19 CORONAVIRUS PANDEMIC (2020). (29 September 2020). [Online] Available: https://www.worldometers.info/coronavirus

Dewan. M. Lin. F, Wen. D. Murshed. M and Uddin. Z, “A Deep Learning Approach to Detecting Engagement of Online Learners,” pp. 1895 - 1902, 2018.

Murshed. M, Dewan. M, Lin. F, and Wen. D, “Engagement Detection in e-Learning Environments using Convolutional Neural Networks,” IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)., pp. 80–86., 2019.

Keras. (28 September 2020). [Online] Available: https://keras.io/

Qiu. G, Yu. X, Sun. B, Wang. Y and Zhang. L, “Metastatic Cancer Image Classification Based on Deep Learning Method,”pp. 658-661, 2020.

Zhong. Z, Zheng. M, Mai. H, Zhao. J and Liu. X, “Cancer image classification based on DenseNet model,”, pp. 1-6, 2020.

Igiri. Chinwe, Uzoma. Anyama and Ita. Silas, “Effect of Learning Rate on Artificial Neural Network in Machine Learning,” International Journal of Engineering Research., Vol. 4, pp. 359-363, 2021.

E. M. Dogo, O. J. Afolabi, N. I. Nwulu, B. Twala and C. O. Aigbavboa, "A Comparative Analysis of Gradient Descent-Based Optimization Algorithms on Convolutional Neural Networks," International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS)., pp. 92-99, 2018.

Z. Wan, Z. Yuxiang, X. Gong, Zhanghuali and B. Yu, "DenseNet model with RAdam optimization algorithm for cancer image classification," IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE)., pp. 771-775, 2021.

Melinte. Octavian and Vladareanu. Luige, “Facial Expressions Recognition for Human-Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer,” Sensors., Vol. 20, pp. 1-21, 2020.

H. S. Suresha and S. S. Parthasarathy, "Alzheimer Disease Detection Based on Deep Neural Network with Rectified Adam Optimization Technique using MRI Analysis," Third International Conference on Advances in Electronics, Computers and Communications (ICAECC)., pp. 1-6, 2020.

Kandel. Ibrahem and Castelli. Mauro, “The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset,” ICT Express., Vol. 6, pp. 312-315, 2020.

Altuwairqi, K., Jarraya, S. K., Allinjawi, A and Hammami, M., “A new emotion–based affective model to detect student’s engagement,”, Vol. 33, pp. 1-11, 2021.

Dewan. M, Lin. F, Wen. D, Murshed. M and Uddin. Z, “A Deep Learning Approach to Detecting Engagement of Online Learners,”, pp. 1895-1902, 2020.

Dash. S, Akber Dewan. M. A, Murshed. M, Lin. F, Abdullah-Al-Wadud. M and Das. A, “A Two-Stage Algorithm for Engagement Detection in Online Learning,” 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI)., pp. 1–4, 2019.

Mane. S. S and Surve. A. R, “Engagement Detection using Video-based Estimation of Head Movement,”, pp. 1745-1749, 2018.

Nezami. O. M, Dras. M, Hamey. L, Richards. D, Wan. S and Paris. C, “Automatic Recognition of Student Engagement using Deep Learning and Facial Expression,”, pp. 1-18, 2018.

Zhang. Z, Li. Z, Liu. H, Cao. T and Liu. S, “Data-driven Online Learning Engagement Detection via Facial Expression and Mouse Behavior Recognition Technology,”,Vol. 58, pp. 63-86, 2019.

Chang. C, Zhang. C, Chen. L and Liu. Y, “An Ensemble Model Using Face and Body Tracking for Engagement Detection,”, pp. 616-622, 2018.

Huang. T, Mei. Y, Zhang. H, Liu. S and Yang. H, “Fine-grained Engagement Recognition in Online Learning Environment,”, pp. 338-341, 2019.

Sümer. Ö, Goldberg. P, Mello. S, Gerjets. P, Trautwein. U and Kasneci. E, “Multimodal Engagement Analysis from Facial Videos in the Classroom,”, pp. 1-15, 2021.

Sharma. P, Joshi S, Gautam. S, Maharjan. S, Filipe. V and Reis. M. J. S, “Student Engagement Detection Using Emotion Analysis, Eye Tracking and Head Movement with Machine Learning,”, pp. 1-18, 2019.

Booth. B. M, Ali. A. M, Narayanan. S. S, Bennett. I, and Farag. A. A, “Toward active and unobtrusive engagement assessment of distance learners,”, pp. 470-476, 2017.

Liu. Y, Chen. J, Zhang. M and Rao. C, “Student engagement study based on multi-cue detection and recognition in an intelligent learning environment. Multimedia Tools and Applications,”, Vol. 77, pp. 28749-28775, 2018.

T. S. A and Guddeti. R. M. R, “Automatic detection of students’ affective states in classroom environment using hybrid convolutional neural networks,”, Vol. 25, pp. 1387-1415, 2021.

Kaur. A, Mustafa. A, Mehta. L and Dhall. A, “Prediction and Localization of Student Engagement in the Wild,”, pp. 1-9, 2018.

Li. Y. Y and Hung. Y. P, “Feature Fusion of Face and Body for Engagement Intensity Detection,”, pp. 3312-3316, 2019.

Thiruthuvanathan. M, Krishnan. B and Rangaswamy. M, “Engagement Detection through Facial Emotional Recognition Using a Shallow Residual Convolutional Neural Networks,”, Vol. 14, pp.236-247, 2021.

Chang. C, Zhang. C, Chen. L and Liu. Y, “An Ensemble Model Using Face and Body Tracking for Engagement Detection,”, pp. 616-622, 2018.

Liao. J, Liang. Y and Pan. J, “Deep facial spatiotemporal network for engagement prediction in online learning,”, Vol. 51, pp. 6609-6621, 2021.

Gupta. A, Jaiswal. R, Adhikari. S and Balasubramanian. V, “DAISEE: Dataset for Affective States in E-Learning Environments,”, Vol. 14, pp.1-12, 2016.

Alnafjan. A, Hosny. M, Al-Wabil. A and Al-Ohali. Y, “Classification of Human Emotions from Electroencephalogram (EEG) Signal using Deep Neural Network,”, Vol. 8, pp. 419-425, 2017.

Abedi. A and Khan. S. S, “Improving state-of-the-art in Detecting Student Engagement with Resnet and TCN Hybrid Network,”, pp. 1-7, 2021.

Li. J, Ngai. G, Leong. H. V and Chan. S. C. F, “Multimodal Human Attention Detection for Reading from Facial Expression, Eye Gaze, and Mouse Dynamics,”, Vol. 16, pp. 37-49, 2016.

Sengupta. S, Basak. S, Saikia. P, Paul. S, Tsalavoutis. V, Atiah. F, Ravi. V and Peters. A, “A review of deep learning with special emphasis on architectures, applications and recent trends,”, pp. 1-29, 2021.

Jalal. M. A, Mihaylova. L and Moore. R. K, “An End-to-End Deep Neural Network for Facial Emotion Classification,” 2019 22th International Conference on Information Fusion (FUSION)., pp. 1–7., 2019.

Mollahosseini. A, Hasani. B and Mahoor. M. H, “AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild,”, pp. 1-18, 2017.

Simple MNIST convnet. (28 September 2020). [Online] Available : https://keras.io/examples/vision/mnist_convnet