Mathematical Modelling for Predicting Electrical Energy Consumption and Heat Rejection in a 3-Level Refrigeration Plant for Beverage Manufacturing Industry

Main Article Content

Assawin Namsert
Thana Radpukdee

Abstract

This research investigates the development of mathematical models for predicting the behavior of electrical energy consumption and heat rejection from the operation of a 3-level refrigeration plant in a beverage manufacturing industry. Three temperature levels are 15, -1 and -6 degrees Celsius. The objective is to find accurate models for predicting electrical energy consumption and heat rejection to analyze the optimal operating condition of the cooling system. The mathematical models under this study include Radial Basis Function (RBF), Multivariate Adaptive Regression Splines (MARS), and Kriging models. From the study, the RBF model with linear spline kernel functions demonstrates the highest prediction performance, with root mean square errors (RMSE) of 2.80% and 2.77% for electrical energy consumption and heat rejection, respectively. Conversely, the RBF model with cubic spline kernel functions exhibits the lowest prediction performance, with RMSE values of 41.10% and 74.17% for electrical energy consumption and heat rejection, respectively. The accurate mathematical models are utilized to represent the behavior of the cooling system and determine the most suitable values for reducing electrical energy consumption and improving heat rejection efficiency, ultimately aiding in reducing production costs for beverage manufacturing industrial facilities in the future.

Article Details

How to Cite
1.
Namsert A, Radpukdee T. Mathematical Modelling for Predicting Electrical Energy Consumption and Heat Rejection in a 3-Level Refrigeration Plant for Beverage Manufacturing Industry. featkku [internet]. 2023 Dec. 22 [cited 2026 Jan. 6];9(2):153-6. available from: https://ph02.tci-thaijo.org/index.php/featkku/article/view/250452
Section
Research Articles

References

Suwanwiang T, Bureeeat S and Wansasueb K. Applied Surrogate Model: Energy Consumption of a Sugar Milling Machine. KKU Research Journal. 2022; 22(1): 85–96.

สุปราณี เหล่าขุนค้า และ ธนา ราษฎร์ภักดี. การสร้างแบบจำลองทางคณิตศาสตร์แบบ คริจจิงของระบบผลิตก๊าซชีวภาพจากการหมักร่วมของหญ้าเนเปียร์ไซเลจ กากมันสำปะหลัง มูลไก่ และมูลวัว. วารสารวิศวกรรมฟาร์มและเทคโนโลยีการควบคุมอัตโนมัติ. 2022; 8(2): 78–87.

Copas JB, Malley PF. A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality. Statistics in Medicine. 2008; 26(15): 2937–57.

Song X, Lv L, Sun W and Zhang J. A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Structural and Multidisciplinary Optimization. 2019; 60(3): 965–81.

Bagheri S, Konen W and Back T. Comparing Kriging and Radial Basis Function Surrogates. Work Computer Intelligence. 2017; 27: 244–59.

Ibrahim Dincer and Kanoglu Mehmet. REFRIGERATION SYSTEMS and APPLICATIONS. United Kingdom: A John Wiley and Sons, Ltd., Publication; 2010.

Phayom W. THERMODYNAMICS. อุดรธานี: [ม.ป.พ.]; 2012.

Li Y and Wu H. A Clustering Method Based on K-Means Algorithm. Phys Procedia. 2012; 25: 1104–9.

Keane DAIJFDASPAJ. Engineering Design via Surrogate Modelling. United Kingdom: A John Wiley and Sons, Ltd., Publication; 2008.

Buhmann MD and Michael JD. Powell’s work in approximation theory and optimisation. Journal of Approximation Theory. 2019; 238: 3–25.

สุจินต์ บุรีรัตน์. การหาค่าเหมาะที่สุดของระบบทางวิศวกรรมเครื่องกล เล่ม 1. ขอนแก่น: โรงพิมพ์มหาวิทยาลัยขอนแก่น; 2556.

Friedman JH. Technical Report No. 110: Fast MARS (Internet). California; 1993. [cited 2023 April 3]. Available from: http://www.milbo.users.sonic.net/earth/Friedman-FastMars.pdf

Lophaven SN, Nielsen HB, Sondergaard J. DACE - A Matlab Kriging Toolbox (Internet). [cited 2023 April 3]. Denmark; 2002. Available from: https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F5C25B1AAA74EF3591339F9E4205C235?doi=10.1.1.17.3530&rep=rep1&type=pdf

Ostadi M. Surrogate Models for Integrated Reforming Combined Cycle Optimization. Norwegian University of Science and Technology; 2013.

Ryu JS, Kim MS, Cha KJ, Lee TH and Choi DH. Kriging interpolation methods in geostatistics and DACE model. KSME International Journal. 2002; 16(5): 619–32.