Application of the Simple Equation Method with Jumarie’s Modified Riemann–Liouville Derivative to Space–Time Fractional Nonlinear mBBM and ZKBBM
คำสำคัญ:
Space-time fractional mBBM equation, Space-time fractional ZKBBM equation, Simple equation method, Jumarie’s modified Riemann-Liouville fractional derivative, Kink waveบทคัดย่อ
This paper employs the Simple Equation (SE) method in conjunction with Jumarie’s modified Riemann–Liouville fractional derivative to derive exact solutions for the space–time fractional modified Benjamin–Bona–Mahony (mBBM) and Zakharov–Kuznetsov Benjamin–Bona–Mahony (ZKBBM) equations. The obtained exponential-type solutions describe kink-shaped traveling waves, which are illustrated through 2D, 3D, and contour plots using suitable parameters. The results confirm the efficiency and reliability of the proposed method as a robust analytical technique for deriving traveling wave solutions in nonlinear fractional models encountered in science and engineering. This study extends the SE method within the framework of Jumarie’s modified Riemann–Liouville fractional derivative, broadening its applicability to space–time fractional systems. The approach establishes a new analytical framework for fractional traveling wave solutions, and the derived results uncover additional dynamical behaviors of the mBBM and ZKBBM equations, demonstrating both the originality and effectiveness of the proposed method.
เอกสารอ้างอิง
Thadee W, Chankaew A, Phoosree S. Effects of wave solutions on shallow-water equation, optical-fibre equation and electric-circuit equation. Maejo Int J Sci Technol 2022;16(3):262-74.
Djilali M, Ali H. (G’/G)-expansion method to seek traveling wave solutions for some fractional nonlinear PDEs arising in natural sciences. Adv Theory Nonlinear Anal Appl 2013;7(2):303-18.
Krishnan E, Ghabshi MA, Alquran M. (G'/G)-expansion method and Weierstrass elliptic function method applied to coupled wave equation. Nonlinear Dyn Syst Theory 2019;19(4):512-22.
Sanjun J, Chankaew A. Wave solutions of the DMBBM equation and the cKG equation using the simple equation method. Front Appl Math Stat 2022;8:952668.
Janma S, Janngam O, Sanjun J. Kink wave solutions for the (1+1)-dimensional nonlinear evolution equation by the simple method with the bernoulli equation. RMUTSB Sci Technol J 2025;9(1):19-28.
Sheikh MAN, Taher MA, Hossain MM, Akter S, Roshid HO. Variable coefficient exact solution of Sharma–Tasso–Olver model by enhanced modified simple equation method. Partial Differ Equ Appl Math 2023;7:100527.
Thadee W, Phoosree S. New wave behaviors generated by simple equation method with Riccati equation of some fourth-order fractional water wave equations. J Phys Soc Japan 2024;93(1):014002.
Sanjun J, Promkwan K, Korkiatsakul T, Janma S. Closed form exact solutions to the combined kdv-mkdv equation and the (2+1)-dimensional gbs equation via the Riccati sub-equation method. RMUTSB Sci Technol J 2024;8(2):46-60.
Sanjun J, Muenduang K, Phoosree S. Wave solutions to the combined KdV-mKdV equation via two methods with the Riccati equation. J Appl Sci Emerg Technol 2024;23(2):e256328.
Khan MI, Marwat DNK, Sabi’u J, Inc M. Exact solutions of Shynaray-IIA equation (S-IIAE) using the improved modified Sardar sub-equation method. Opt Quantum Electron 2024;56(3):459.
Ibrahim IS, Sabi’u J, Gambo YY, Rezapour S, Inc M. Dynamic soliton solutions for the modified complex Korteweg-de Vries system. Opt Quantum Electron 2024;56(6):954.
Sabi’u J, Sirisubtawee S, Sungnul S, Inc M. Wave dynamics for the new generalized (3+1)-D Painlevé-type nonlinear evolution equation using efficient techniques. AIMS Math 2024;9(11):32366-98.
Sanjun J, Aphaisawat W, Korkiatsakul T. Wave solutions to the Landau-Ginzburg-Higgs equation and modified KdV-Zakharov-Kuznetsov equation by the Riccati-Bernoulli sub-ODE method. J Appl Sci Emerg Technol 2024;23(1):e253520.
Hossain AKMKS, Akbar MA. Traveling wave solutions of Benny Luke equation via the enhanced (G'/G)-expansion method. Ain Shams Eng J 2021;12(4):4181-7.
Abdel-Gawad HI, Tantawy M, Abdelwahab AM. A new technique for solving Burgers-Kadomtsev-Petviashvili equation with an external source. Suppression of wave breaking and shock wave. Alex Eng J 2023;69:167-76.
Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comp Math Appl 2006;51:1367-76.
Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl Math Lett 2009;22(3):378-85.
Kudryashov NA. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solit Fract 2005;24(5):1217-31.
Nofal TA. Simple equation method for nonlinear partial differential equations and its applications. J Egypt Math Soc 2016;24(2):204-9.
Poosree S, Thadee W. Wave effects of the fractional shallow water equation and the fractional optical fiber equation. Front Appl Math Stat 2022;8:900369.
Parker AE. Who solved the Bernoulli differential equation and how did they do it?. Coll Math J 2013;44(2):89-97.
Arefin MA, Zaman UHM, Uddin MH, Inc M. Consistent travelling wave characteristic of space–time fractional modified Benjamin–Bona–Mahony and the space–time fractional Duffing models. Opt Quantum Electron 2024;56(4):588.
Islam MN, Parvin R, Pervin MR, Akbar MA. Adequate soliton solutions to the time fractional Zakharov-Kuznetsov equation and the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation. Arab J Basic Appl Sci 2021;28(1):370-85.
Javeed S, Saif S, Waheed A, Baleanu D. Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers. Results Phys 2018;9:1275-81.
Zhao S, Li Z. Bifurcation, chaotic behavior, and traveling wave solutions of the space–time fractional Zakharov–Kuznetsov–Benjamin–Bona–Mahony equation. Front Phys 2025;13:1502570.
ดาวน์โหลด
เผยแพร่แล้ว
รูปแบบการอ้างอิง
ฉบับ
ประเภทบทความ
สัญญาอนุญาต
ลิขสิทธิ์ (c) 2025 วารสารวิทยาศาสตร์และเทคโนโลยี หัวเฉียวเฉลิมพระเกียรติ

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความทุกบทความที่ได้รับการตีพิมพ์ถือเป็นลิขสิทธิ์ของ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยหัวเฉียวเฉลิมพระเกียรติ