Assessment of genetic variability in maize cultivars (Zea mays L.) in Mahasarakham Province, Thailand based on ISSR analysis
Keywords:
Cluster analysis, genetic diversity, ISSR markers, molecular characterization, DNA polymorphismAbstract
Maize (Zea mays L.) is one of the most important cereals and most widely cultivated staple crops worldwide. Studying genetic diversity is necessary for varietal identification, better understanding of relationships, and conserving genetic resources. This study aimed to evaluate the genetic diversity of eight local maize cultivars sourced from Kantarawichai, Muang, Chiang Yuen, Na Chueak, and Yang Si Surat in Mahasarakham Province, Thailand. DNA profiling was conducted using 14 ISSR markers, revealing that 11 of these markers produced a total of 61 bands, with an average of 5.55 alleles per locus across the samples. Our findings demonstrated a high polymorphism rate of 86.85%. The genetic similarity coefficients ranged from 0.128 to 0.791, while PIC values varied from 0.12 to 0.44, averaging 0.34. ISSR markers exhibited significant discriminatory power in detecting genetic diversity. The dendrogram classified genotypes into three clusters: Cluster I comprised genotypes with yellow kernels, Cluster II included five genotypes divided into two subclusters—SCII-A with white kernels and SCII-B with mixed kernels—and Cluster III with one genotype featuring white kernels. This clustering based on kernel colors closely aligned with the ISSR profiles of the maize genetic resources, effectively distinguishing between groups with different kernel types. These results highlight the effective use of ISSR markers in assessing genetic diversity among local maize cultivars in Mahasarakham Province. This preliminary evaluation emphasizes the importance of conserving and utilizing local maize genetic resources to enhance regional maize cultivation and support future breeding programs.
References
Amiteye, S. (2021). Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon, 7(10), e08093. https://doi.org/10.1016/j.heliyon.2021.e08093
Borse, V., Zanan, R., & Nadaf, A. (2018). Development of ISSR derived SCAR marker for economically important Benstonea thwaitesii (Martelli) Callm. and Buerki. Indian Journal of Biotechnology, 17, 480-483. http://nopr.niscpr.res.in/handle/123456789/45278
Botstein, D., White, R. L., Skalnick, M. H., & Davies, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphism. The American Journal of Human Genetics, 32, 314-331.
Dar, T. H., Shakeel, R., & Verma, S. (2018). Comparative germplasm characterization of maize (Zea mays L.) in Rajouri region of Pir Panjal Himalaya J & K (India), based on morphological and ISSR Markers. Journal of Crop Science and Biotechnology, 21, 43-55. https://doi.org/10.1007/s12892-017-0128-0
do Amaral Júnior, A. T., de Oliveira, É. C., Gonçalves, L. S. A., Scapim, C. A., Candido, L. S., da Conceição Silva, T. R., & da Cunha, K. S. (2011). Assessment of genetic diversity among maize accessions using inter simple sequence repeats (ISSR) markers. African Journal of Biotechnology, 10, 15462-15469. https://doi.org/10.5897/AJB10.2624
Domenyuk, V. P., Verbitskaya, T. G., Belousov, A. A., & Sivolap, Y. M. (2002). Marker analysis of quantitative traits in maize by ISSR-PCR. Russian Journal of Genetics, 38(10), 1161-1168. https://doi.org/10.1023/A:1020600804246
Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13-15.
Dube, S. P., Sibiya, J., & Kutu, F. (2023). Genetic diversity and population structure of maize inbred lines using phenotypic traits and single nucleotide polymorphism (SNP) markers. Scientific Reports, 13, 17851. https://doi.org/10.1038/s41598-023-44961-3
Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. M. (2022). Global maize production, consumption and trade: trends and R&D implications. Food Security, 14, 1295-1319. https://doi.org/10.1007/s12571-022-01288-7
Feroz, E., Kausar, R., Feroze, N., & Begum, S. (2022). Comparison of SSR and ISSR based DNA Polymorphism of maize genotypes grown in Azad Jammu and Kashmir. Biomedical Journal of Scientific & Technical Research, 47, 38364-3878. https://doi.org/10.26717/BJSTR.2022.47.007490
Hormaza, J. I. (1999). Early selection in cherry combining RAPDs with embryo culture. Scientia Horticulturae, 79(1-2), 121-126. https://doi.org/10.1016/S0304-4238(98)00204-0
Hoxha, S., Shariflou, M. R., & Sharp, P. (2004). Evaluation of genetic diversity in Albanian maize using SSR markers [Zea mays L.; simple sequence repeat]. Maydica, 49(2).
Islam, M. A., Alam, M. S., Maniruzzaman, M., & Haque, M. S. (2023). Microsatellite marker-based genetic diversity assessment among exotic and native maize inbred lines of Bangladesh. Saudi Journal of Biological Sciences, 30, 103715. https://doi.org/10.1016/j.sjbs.2023.103715
Lenka, D., Tripathy, S. K., Kumar, R., Behera, M., & Ranjan, R. (2015). Assessment of genetic diversity in quality protein maize (QPM) inbreds using ISSR markers. Journal of Environmental Biology, 36, 985-992.
Muhammad, R. W., Qayyum, A., Ahmad, M. Q., Hamza, A., Yousaf, M., Ahmad, B., Younas, W., Malik, S., Liaqat, S., & Noor, E. (2017). Characterization of maize genotypes for genetic diversity on the basis of inter simple sequence repeats. Genetics and Molecular Research, 16, 1-19. http://dx.doi.org/10.4238/gmr16019438
Mukhlif, F. H., Ramadan, A. S. A., Hammody, D. T., Mousa, M. O., & Shahatha, S. S. (2023). Molecular assessment of genetic divergence among maize genotypes. SABRAO Journal of Breeding & Genetics, 55, 739. https://doi.org/10.54910/sabrao2023.55.3.12
Randi, E., Spina, F., & Massa, B. (1989). Genetic variability in Cory’s Shearwater (Calonectris diomedea). The Auk, 106, 411-417. https://doi.org/10.1093/auk/106.3.411
Rini, D. S., Budiyanti, Y., Valentine, M., & Permana, R. (2023). ISSR and SRAP for assessing genetic variability of Indonesian local rice genotypes (Oryza sativa L.). Crop Breeding and Applied Biotechnology, 23, e448923411. https://doi.org/10.1590/1984-70332023v23n4a46
Rohlf, F. J. (2000). NTSYS-pc: Numerical taxonomy and multivariate analysis system. Exeter Publishing.
Roldán-Ruiz, I., Dendauw, J., Van Bockstaele, E., Depicker, A., & De Loose, M. (2000). AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding, 6, 125-134. https://doi.org/10.1023/A:1009680614564
Uslan, U., & Jannah, N. (2020). Genetic diversity of local corn (Zea mays) cultivars from South Amarasi, Kupang District, Indonesia by Inter Simple Sequence Repeats marker. Biodiversitas Journal of Biological Diversity, 21, 1208-1214. https://doi.org/10.13057/biodiv/d21034
Vivodík, M., Balážová, Ž., Gálová, Z., & Petrovičová, L. (2017). Genetic diversity analysis of maize (Zea mays L.) using SCoT markers. The Journal of Microbiology, Biotechnology and Food Sciences, 6, 1170. https://doi.org/10.15414/jmbfs.2017.6.5.1170-1173
Yaman, M. (2022). Evaluation of genetic diversity by morphological, biochemical and molecular markers in sour cherry genotypes. Molecular Biology Reports, 49, 5293-5301. https://doi.org/10.1007/s11033-021-06941-6
Yani, A., Chasani, A. R., & Daryono, B. S. (2022). Genetic diversity of eight maize (Zea mays) cultivars from East Nusa Tenggara (Indonesia) based on inter simple sequence repeat markers. Biodiversitas Journal of Biological Diversity, 23, 4124-4130. https://doi.org/10.13057/biodiv/d230833
Zeyad, A., Ismail, H. M., & Mustafa, A. (2023). Determination of maize genotypes performance under water deficit using ISSR molecular index. Plant Science Today, 10, 30-37. https://doi.org/10.14719/pst.1728
Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20, 176-183. https://doi.org/10.1006/geno.1994.1151
Zulfahmi, R. (2013). Genetic diversity of Eurycoma longifolia jack based on random amplified polymorphic DNA marker. Jurnal Manajemen Hutan Tropika, 19(2), 138-144. https://doi.org/10.7226/jtfm.19.2.138
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Food Agricultural Sciences and Technology
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.