Antioxidant and antimicrobial properties of Artocarpus lakoocha leaves and heartwood for natural food preservative

Authors

  • Supaporn Pumriw Department of Food Technology, Faculty of Agricultural Technology, Kalasin University, Mueang Kalasin, Kalasin 46000, Thailand
  • Kannika Huaisan Department of Food Technology, Faculty of Agricultural Technology, Kalasin University, Mueang Kalasin, Kalasin 46000, Thailand
  • Panorjit Nitisuk Department of Food Technology, Faculty of Agricultural Technology, Kalasin University, Mueang Kalasin, Kalasin 46000, Thailand
  • Apinya Bhumsaidon Department of Food Technology, Faculty of Agricultural Technology, Kalasin University, Mueang Kalasin, Kalasin 46000, Thailand
  • Jintana Sangsopha Faculty of Science and Technology Phetchaburi Rajabhat University, Muang District, Phetchaburi Province 76000, Thailand
  • Thorung Pranil Department of Food Technology, Faculty of Agricultural Technology, Kalasin University, Mueang Kalasin, Kalasin 46000, Thailand

Keywords:

Antimicrobial properties, Antioxidant activity, Artocarpus lakoocha, Bioactive composition

Abstract

Artocarpus lakoocha Roxb. (Moraceae) is highly regarded for its properties. The bioactive composition (total phenolic and flavonoid contents) of A. lakoocha leaves and heartwood extracts, as well as the antioxidant activity against 2,2-Diphenyl-1-picrylhydrazyl (DPPH), were evaluated. Furthermore, the antibacterial properties of these extracts were evaluated against strains of Escherichia coli (E. coli), Bacillus subtilis (B. subtilis), Bacillus cereus (B. cereus), Staphylococcus aureus (S. aureus), and Salmonella typhimurium (S. typhimurium). Our study showed that the heartwood extracts had high total phenolic content (53.93 mg GAE/g dry extract), total flavonoid content (1459.73 µg QE/g dry extract), and strong antioxidant activity (119.37 µg Vitamin C/g dry extract). The antibacterial results also demonstrated that the heartwood extracts showed a maximum inhibition zone of 15.55 mm against B. cereus. While the leaf extracts’ inhibitory zone against B. cereus was 4.86 mm. Both extracts were sensitive to gram-negative bacteria (E. coli) with the lowest minimum inhibitory concentration (MIC) (1.953 mg/mL). However, the extracts were insensitive to S. typhimurium, with the highest MIC value of 125 mg/mL and 3.906 mg/mL from leaves and heartwood extracts respectively. The result’s fndings underscore the bioactive composition, antioxidant capacity, and antimicrobial properties of A. lakoocha heartwood extract, suggesting its potential as a possible natural antibacterial source for food preservation applications.

References

Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, 196, 67-76. https://doi.org/10.1016/j.plantsci.2012.07.014

Aliero, A. A., & Ibrahim, A. D. (2012). Antibiotic resistance and the prospects of medicinal plants in the treatment of salmonellosis. In Salmonella - A Diversified Superbug (pp. 65-90). IntechOpen. https://doi.org/10.5772/29241

Amarowicz, R., Pegg, R. B., Rahimi-Moghaddam, P., Barl, B., & Weil, J. A. (2004). Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry, 84(4), 551-562. https://doi.org/10.1016/S0308-8146(03)00278-4

Baba, S. A., & Malik, S. A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science, 9(4), 449-454. https://doi.org/10.1016/j.jtusci.2014.11.001

Bhattacharya, E., Dutta, R., Chakraborty, S., & Biswas, S. M. (2019). Phytochemical profiling of Artocarpus lakoocha Roxb. leaf methanol extract and its antioxidant, antimicrobial and antioxidative activities. Asian Pacific Journal of Tropical Biomedicine, 9(11), 484-492. https://doi.org/10.4103/2221-1691.270984

Biswas, S. M., & Chakraborty, N. (2013). Shedded Artocarpus leaves—good plant sources of natural squalene with potent antioxidant and antimicrobial activity—alternative to marine animals. Journal of Natural Pharmaceuticals, 4(1), 21-27. https://doi.org/10.4103/2229-5119.110344

Bouarab-Chibane, L., Forquet, V., Lantéri, P., Clément, Y., Léonard-Akkari, L., Oulahal, N., Degraeve, P., & Bordes, C. (2019). Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure-activity relationship) models. Frontiers in Microbiology, 10, 829. https://doi.org/10.3389/fmicb.2019.00829

Chapot-Chartier, M.-P., & Kulakauskas, S. (2014). Cell wall structure and function in lactic acid bacteria. Microbial Cell Factories, 13(1), 1-23. https://doi.org/10.1186/1475-2859-13-S1-S9

Charirak, P., & Ratananikom, K. (2022). Anti-Methicillin-Resistant Staphylococcus aureus activities of Artocarpus lakoocha Roxb. extract and its mode of action. ScientificWorldJournal, 2022, 1839356. https://doi.org/10.1155/2022/1839356

Chaves, N., Santiago, A., & Alías, J. C. (2020). Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants, 9(1), 76. https://doi.org/10.3390/antiox9010076

Choi, Y. M., Noh, D. O., Cho, S. Y., Suh, H. J., Kim, K. M., & Kim, J. M. (2006). Antioxidant and antimicrobial activities of propolis from several regions of Korea. LWT - Food Science and Technology, 39(7), 756-761. https://doi.org/10.1016/j.lwt.2005.05.015

Elisha, I. L., Botha, F. S., McGaw, L. J., & Eloff, J. N. (2017). The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complementary and Alternative Medicine, 17(1), 1-10. https://doi.org/10.1186/s12906-017-1645-z

Gardner, S., Sidisunthorn, P., & Anusarnsunthorn, V. (2000). A field guide to forest trees of northern Thailand. Kobfai Publishing Project.

Gautam, P., & Patel, R. (2014). Artocarpus lakoocha Roxb: An overview. Journal of Complementary and Alternative Medicine, 1(1), 10-14.

Heatley, N. G. (1944). A method for the assay of penicillin. Biochemical Journal, 38(1), 61-65. https://doi.org/10.1042/bj0380061

Hu, S., Zhao, G., Zheng, Y., Qu, M., Jin, Q., Tong, C., & Li, W. (2017). Effect of drying procedures on the physicochemical properties and antioxidant activities of polysaccharides from Crassostrea gigas. PLoS ONE, 12(11), e0188536. https://doi.org/10.1371/journal.pone.0188536

Jahan, S., Gosh, T., Begum, M., & Saha, B. K. (2011). Nutritional profile of some tropical fruits in Bangladesh: Specially anti-oxidant vitamins and minerals. Bangladesh Journal of Medical Science, 10(2), 95-103. https://doi.org/10.3329/bjms.v10i2.7804

Kumar, M. B. S., Kumar, M. C. R., Bharath, A. C., Kumar, H. R. V., Kekuda, T. R. P., Nandini, K. C., Rakshitha, M. N., & Raghavendra, H. L. (2010). Screening of selected biological activities of Artocarpus lakoocha Roxb. (Moraceae) fruit pericarp. Journal of Basic and Clinical Pharmacy, 1(4), 239-245.

Lima-Filho, J. V. M., Carvalho, A. F. F. U., Freitas, S. M., & Melo, V. M. M. (2002). Antibacterial activity of extracts of six macroalgae from the northeastern Brazilian coast. Brazilian Journal of Microbiology, 33, 311-314. https://doi.org/10.1590/S1517-83822002000400006

Lobiuc, A., Pavăl, N.-E., Mangalagiu, I. I., Gheorghiță, R., Teliban, G.-C., Amăriucăi-Mantu, D., & Stoleru, V. (2023). Future antimicrobials: Natural and functionalized phenolics. Molecules, 28(3), 1114. https://doi.org/10.3390/molecules28031114

Makhafola, T. J. (2012). Five Ochna species have high antibacterial activity and more than ten antibacterial compounds. South African Journal of Science, 108(1), 1-6. https://doi.org/10.4102/sajs.v108i1/2.689

Mandalari, G., Bennett, R. N., Bisignano, G., Trombetta, D., Saija, A., Faulds, C. B., Gasson, M. J., & Narbad, A. (2007). Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. Journal of Applied Microbiology, 103(6), 2056-2064. https://doi.org/10.1111/j.1365-2672.2007.03456.x

Muti, A. F., Pradana, D. L. C., & Rahmi, E. P. (2021). Extract of Caesalpinia sappan L. heartwood as food treatment anti-diabetic: A narrative review. IOP Conference Series: Earth and Environmental Science, 755(1), 012042. https://doi.org/10.1088/1755-1315/755/1/012042

Nabi, N., & Shrivastava, M. (2016). Estimation of total flavonoids and antioxidant activity of Spilanthes acmella leaves. UK Journal of Pharmaceutical and Biosciences, 4, 29-34. https://doi.org/10.20510/ukjpb/4/i6/134657

Nair, A., Chattopadhyay, D., & Saha, B. (2019). Plant-derived immunomodulators. In M. S. Ahmad Khan, I. Ahmad, & D. Chattopadhyay (Eds.), New look to phytomedicine (pp. 435-499). Academic Press. https://doi.org/10.1016/B978-0-12-814619-4.00018-5

Nanasombat, S., & Lohasupthawee, P. (2005). Antibacterial activity of crude ethanolic extracts and essential oils of spices against salmonellae and other enterobacteria. KMITL Science and Technology Journal, 5(3), 527-538.

Nath, P. C., & Boruah, S. (2019). Antimicrobial activity of ethanolic and methanolic extract of Artocarpus lakoocha Wall. Ex Roxb. (Moraceae) against five different oral bacterial strains. International Journal of Current Microbiology and Applied Sciences, 8(3), 1321-1325. https://doi.org/10.20546/ijcmas.2019.803.156

Palanuvej, C., Issaravanich, S., Tunsaringkarn, T., Rungsiyothin, A., Vipunngeun, N., Ruangrungsi, N., & Likhitwitayawuid, K. (2007). Pharmacognostic study of Artocarpus lakoocha heartwood. Journal of Health Research, 21(4), 257-262.

Pandey, A., & Bhatnagar, S. P. (2009). Preliminary phytochemical screening and antimicrobial studies on Artocarpus lakoocha Roxb. Ancient Science of Life, 28(4), 21-24.

Parekh, J., & Chanda, S. (2007). In vitro antibacterial activity of the crude methanol extract of Woodfordia fruticosa Kurz. flower (Lythraceae). Brazilian Journal of Microbiology, 38, 204-207. https://doi.org/10.1590/S1517-83822007000200004

Prashanthi, P., Rajamma, A. J., Sateesha, S. B., Chandan, K., Tiwari, S. N., & Ghosh, S. K. (2016). Pharmacognostical and larvicidal evaluation of Artocarpus lakoocha Roxb. from Western Ghats. International Journal of Natural Products Research, 7(2), 141-149.

Pyla, R., Kim, T.-J., Silva, J. L., & Jung, Y.-S. (2010). Enhanced antimicrobial activity of starch-based film impregnated with thermally processed tannic acid, a strong antioxidant. International Journal of Food Microbiology, 137(2-3), 154-160. https://doi.org/10.1016/j.ijfoodmicro.2009.12.011

Ratananikom, K., Srikacha, N., & Khannalao, Y. (2019). Antibacterial activity of Artocarpus lakoocha Roxb. crude extract towards common human pathogens. Journal of Thai Traditional and Alternative Medicine, 17(1), 54-62.

Rios, J. L., Recio, M. C., & Villar, A. (1988). Screening methods for natural products with antimicrobial activity: A review of the literature. Journal of Ethnopharmacology, 23(2), 127-149. https://doi.org/10.1016/0378-8741(88)90001-3

Rodríguez-Melcón, C., Alonso-Calleja, C., García-Fernández, C., Carballo, J., & Capita, R. (2021). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology, 11(1), 46. https://doi.org/10.3390/biology11010046

Salih, A. M., Al-Qurainy, F., Nadeem, M., Tarroum, M., Khan, S., Shaikhaldein, H. O., Al-Hashimi, A., Alfagham, A., & Alkahtani, J. (2021). Optimization method for phenolic compounds extraction from medicinal plant (Juniperus procera) and phytochemicals screening. Molecules, 26(24), 7454. https://doi.org/10.3390/molecules26247454

Senapong, S., Puripattanavong, J., & Teanpaisan, R. (2014). Anticandidal and antibiofilm activity of Artocarpus lakoocha extract. Songklanakarin Journal of Science and Technology, 36(4), 451-457.

Shanmughapriya, S., Manilal, A., Sujith, S., Selvin, J., Kiran, G. S., & Natarajaseenivasan, K. (2008). Antimicrobial activity of seaweed extracts against multiresistant pathogens. Annals of Microbiology, 58, 535-541. https://doi.org/10.1007/BF03175554

Shrestha, P. M., & Dhillion, S. S. (2006). Diversity and traditional knowledge concerning wild food species in a locally managed forest in Nepal. Agroforestry Systems, 66, 55-63. https://doi.org/10.1007/s10457-005-6642-4

Singhatong, S., Leelarungrayub, D., & Chaiyasut, C. (2010). Antioxidant and toxicity activities of Artocarpus lakoocha Roxb. heartwood extract. Journal of Medicinal Plant Research, 4(10), 947-953. https://doi.org/10.5897/JMPR10.133

Teanpaisan, R., Kawsud, P., Pahumunto, N., & Puripattanavong, J. (2017). Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. Journal of Traditional and Complementary Medicine, 7(2), 172-177. https://doi.org/10.1016/j.jtcme.2016.06.007

Teanpaisan, R., Senapong, S., & Puripattanavong, J. (2014). In vitro antimicrobial and antibiofilm activity of Artocarpus lakoocha (Moraceae) extract against some oral pathogens. Tropical Journal of Pharmaceutical Research, 13(7), 1149-1155. https://doi.org/10.4314/tjpr.v13i7.20

Teeranachaideekul, V., Nithitanakool, S., Junhunkit, T., Ponpanich, L., Nopporn, N., Detamornrat, U., & Chulasiri, M. (2013). Liposomes: A novel carrier system for Artocarpus lakoocha extract to improve skin whitening. Journal of Applied and Advanced Science and Pharmacy, 2, 243-253.

Vittaya, L., Charoendat, U., Ui-eng, J., & Leesakul, N. (2022). Effect of extraction solvents on phenolic compounds and flavonoids from Pongame oiltree (Derris indica [Lamk.] Bennet) aerial parts and their growth inhibition of aquatic pathogenic bacteria. Agriculture and Natural Resources, 56(3), 569-582. https://doi.org/10.34044/j.anres.2022.56.3.13

Downloads

Published

15-10-2024