Physical and chemical properties and antioxidant characteristics of gac aril juice fermented with Aspergillus niger

Authors

  • Kessara Mungkunkoth Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham Province, 44150, Thailand
  • Sirirat Deeseenthum Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham Province, 44150, Thailand
  • Viitra Luang-In Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham Province, 44150, Thailand

Keywords:

Aspergillus niger, β-carotene, carotenoids, gac aril juice, lycopene

Abstract

Gac (Momordica cochinchinensis (Lour.) Spreng) is a medicinal herb that contains carotenoid substances, phenolic compounds, and flavonoids, and is well-known for reducing the risks of coronary heart disease and prostate cancer. This study investigated the carotenoid and antioxidant properties of Gac aril juice fermented for a 48-hour fermentation process with 2% (v/v) Aspergillus niger. The fermented juice exhibited an orange hue with L*, a*, and b* values of 51.47±4.50, 28.37±1.16, and 43.19±0.97, respectively. Total dissolved solids (TDS) decreased to 8.20±0.69 °Brix, and pH also decreased during fermentation. High-performance liquid chromatography (HPLC) revealed higher lycopene (8349.48 µg/100 mL) and β-carotene (57.09±0.64 µg/100 mL) contents than the control. Antioxidant activity, assessed using 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion-reducing antioxidant power (FRAP) assays, increased with fermentation time. At 48 hours, DPPH activity reached 1.76±0.01 µg of TE/mL, and FRAP activity reached 108.92±0.78 µg Fe (II)/mL. Total phenolic content (TPC) and total flavonoid content (TFC) were 267.30±1.53 µg GAE/mL and 742.10±2.65 µg RE/mL, respectively. Fermented Gac aril juice with A. niger contained CO₂ and carbamic acid, which were not found in the non-fermented juice. Our findings created value-added products, such as health-promoting beverages and cosmetic ingredients.

References

Cucu, T., Huvaere, K., Van Den Bergh, M.-A., Vinkx, C., & Van Loco, J. (2012). A simple and fast HPLC method to determine lycopene in foods. Food Analytical Methods, 5(5), 1221–1228. https://doi.org/10.1007/s12161-011-9354-6

Dufossé, L., Fouillaud, M., Caro, Y., Mapari, S. A. S., & Suthiwong, N. (2014). Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Current Opinion in Biotechnology, 26, 56–61. https://doi.org/10.1016/j.copbio.2013.09.007

Elshafei, A. M., Othman, A. M., Elsayed, M. A., Ibrahim, G. E., Hassan, M. M., & Mehanna, N. S. (2022). A statistical strategy for optimizing the production of α-galactosidase by a newly isolated Aspergillus niger NRC114 and assessing its efficacy in improving soymilk properties. Journal of Genetic Engineering and Biotechnology, 20(1), Article 36. https://doi.org/10.1186/s43141-022-00315-6

Ishida, B. K., & Chapman, M. H. (2009). Carotenoid extraction from plants using a novel, environmentally friendly solvent. Journal of Agricultural and Food Chemistry, 57(3), 1051–1059. https://doi.org/10.1021/jf8026292

Li, J., Ye, F., Zhou, Y., Lei, L., Chen, J., Li, S., & Zhao, G. (2024). Tailoring the composition, antioxidant activity, and prebiotic potential of apple peel by Aspergillus oryzae fermentation. Food Chemistry: X, 21, Article 101134. https://doi.org/10.1016/j.fochx.2024.101134

Lynch, K. E., Parke, E. C., & O’Malley, M. A. (2019). How causal are microbiomes? A comparison with the Helicobacter pylori explanation of ulcers. Biology & Philosophy, 34(6), Article 62. https://doi.org/10.1007/s10539-019-9702-2

Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1–16. https://doi.org/10.1007/s11418-019-01364-x

Marnpae, M., Chusak, C., Balmori, V., Kamonsuwan, K., Dahlan, W., Nhujak, T., Hamid, N., & Adisakwatana, S. (2022). Probiotic Gac fruit beverage fermented with Lactobacillus paracasei: Physiochemical properties, phytochemicals, antioxidant activities, functional properties, and volatile flavor compounds. LWT – Food Science and Technology, 169, Article 113986. https://doi.org/10.1016/j.lwt.2022.113986

Meini, M.R., Cabezudo, I., Galeto, C. S., & Romanini, D. (2021). Production of grape pomace extracts with enhanced antioxidant and prebiotic activities through solid-state fermentation by Aspergillus niger and Aspergillus oryzae. Food Bioscience, 42, Article 101168. https://doi.org/10.1016/j.fio.2021.101168

Mendez-Carmona, J. Y., Ramírez-Guzman, K. N., Ascacio-Valdés, J. A., Sepúlveda, L., & Aguilar, C. N. (2022). Solid-state fermentation for recovery of carotenoids from tomato waste. Innovative Food Science & Emerging Technologies, 80, Article 103108. https://doi.org/10.1016/j.ifset.2022.103108

Monajemi, R., Oryan, S., Haeri-Roohani, A., Ghannadi, A., & Jafarian, A. (2005). Cytotoxic effects of essential oils of some Iranian citrus peels. Iranian Journal of Pharmaceutical Research, 3(3), 183–187. https://doi.org/10.22037/ipr.2010.635

Radošević, K., Srček, V. G., Bubalo, M. C., Brnčić, S. R., Takács, K., & Redovniković, I. R. (2017). Assessment of glucosinolates, antioxidative and antiproliferative activity of broccoli and collard extracts. Journal of Food Composition and Analysis, 61, 59–66. https://doi.org/10.1016/j.jfca.2017.02.001

Rajan, M., Andrade, J. K. S., Barros, R. G. C., Guedes, T. J. F. L., & Narain, N. (2023). Enhancement of polyphenolics and antioxidant activities of jambolan (Syzygium cumini) fruit pulp using solid-state fermentation by Aspergillus niger and A. flavus. Biocatalysis and Agricultural Biotechnology, 47, Article 102589. https://doi.org/10.1016/j.bcab.2022.102589

Santos-Sánchez, N. F. (2019). Antioxidant compounds and their antioxidant mechanism. In E. Shalaby (Ed.), Antioxidants (pp. 1–16). IntechOpen. https://doi.org/10.5772/intechopen.85270

Speek, A. J., Temalilwa, C. R., & Schriver, J. (1986). Determination of β-carotene content and vitamin A activity of vegetables by high-performance liquid chromatography and spectrophotometry. Food Chemistry, 19(1), 65–74. https://doi.org/10.1016/0308-8146(86)90128-7

Suwannalert, P., Boonsiri, P., & Khampitak, T. (2005). Lycopene and prevention of coronary heart disease and cancer. Archives of Allied Health Sciences, 17(3), 33–38. https://he01.tci-thaijo.org/index.php/ams/article/view/66035

Takahashi, J. A., Barbosa, B. V. R., Martins, B. A., Guirlanda, C. P., & Moura, M. A. F. (2020). Use of the versatility of fungal metabolism to meet modern demands for healthy aging, functional foods, and sustainability. Journal of Fungi, 6(4), Article 223. https://doi.org/10.3390/jof6040223

Tian, M., Xu, X., Liu, Y., Xie, L., & Pan, S. (2016). Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chemistry, 190, 374–380. https://doi.org/10.1016/j.foodchem.2015.05.098

Vuong, L. T., Franke, A., Custer, L. J., & Murphy, S. P. (2006). Momordica cochinchinensis Spreng. (gac) fruit carotenoids reevaluated. Food Composition and Analysis, 19(6–7), 664–668. https://doi.org/10.1016/j.jfca.2005.02.001

Xu, J., Liu, W., Yao, W., Pang, X., Yin, D., & Gao, X. (2009). Carboxymethylation of a polysaccharide extracted from Ganoderma lucidum enhances its antioxidant activities in vitro. Carbohydrate Polymers, 78(2), 227–234. https://doi.org/10.1016/j.carbpol.2009.03.028

Zhang, L., Tu, Z. C., Yuan, T., Wang, H., Xie, X., & Fu, Z. F. (2016). Antioxidants and α-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships. Food Chemistry, 208, 61–67. https://doi.org/10.1016/j.foodchem.2016.03.079

Zhang, T., Gong, Y., Yang, C., Liu, X., Wang, X., & Chen, T. (2024). Biofortification with Aspergillus awamori offers a new strategy to improve the quality of Shanxi-aged vinegar. LWT - Food Science and Technology, 192, 115728. https://doi.org/10.1016/j.lwt.2024.115728

Downloads

Published

02-09-2025

How to Cite

Mungkunkoth, K., Deeseenthum, S., & Luang-In, V. (2025). Physical and chemical properties and antioxidant characteristics of gac aril juice fermented with Aspergillus niger. Food Agricultural Sciences and Technology, 11(3), 285–295. retrieved from https://ph02.tci-thaijo.org/index.php/stej/article/view/254674