Faty acid composition of lipids from Ugandan green coffee beans

Authors

  • Michael Bamuwamye Department of Food Science and Technology, Faculty of Science, Kyambogo University, P.O. Box, 1, Kyambogo, Uganda
  • Amos Mugabe Department of Food Science and Technology, Faculty of Science, Kyambogo University, P.O. Box, 1, Kyambogo, Uganda
  • Henrietah Nakisozi Department of Food Science and Technology, Faculty of Science, Kyambogo University, P.O. Box, 1, Kyambogo, Uganda
  • George William Byarugaba-Bazirake Department of Food Science and Technology, Faculty of Science, Kyambogo University, P.O. Box, 1, Kyambogo, Uganda
  • Patrick Ogwok Department of Food Science and Technology, Faculty of Science, Kyambogo University, P.O. Box, 1, Kyambogo, Uganda

Keywords:

Green coffee beans, faty acid composition, nutritional quality, Coffea arabica, Coffea canephora

Abstract

The study assessed the lipid content of green Coffea arabica and Coffea canephora var. robusta beans, the fatty acid (FA) composition of the lipids, and their nutritional quality to provide a basis for utilization. The green coffee beans (GCB) were obtained from the Uganda Coffee Development Authority (UCDA) and coffee dealers. Lipid was extracted in a Soxhlet apparatus using n-hexane. Fatty acids were determined as the FA methyl esters using gas chromatography with flame ionization detector (GC-FID). Differences in lipid content were analyzed using one-way analysis of variance (ANOVA). The polyunsaturated FA; PUFA/saturated fatty acid; SFA (PUFA/SFA), palmitic acid; PA/PUFA, and ω6:ω3 ratios were used to evaluate the nutritional quality of the GCB lipids. Lipid content ranged between 1.75 and 15.45%. Higher lipid content was obtained for C. arabica than for C. canephora. Unsaturated FA (UFA) predominated over SFA. Linoleic acid (LA; 18:2ω6) and oleic acid (OA; 18:1ω9) were the main UFA and accounted for 50–60% of the total FA. Palmitic acid (16:0) was the major SFA. The PUFA/SFA ratio was within the desired range. Fifty-eight percent of the samples had PA/PUFA ratio < 1. The ω6/ω3 ratio was higher than the recommendation of 1:1 to 4:1 for a healthy diet. Information on the FA composition of coffee lipids will provide a basis for their industrial utilization. Coffee lipid can be a source of 16:0 and 18:2ω6 that can be used in food and as an excipient in drug preparations, respectively.

References

Alabdalall, A. H. (2024). Gas chromatography–mass spectrometry analysis of fatty acids in healthy and Aspergillus niger MH078571.1-infected Arabica coffee beans. PLoS ONE, 19(1), e0293369. https://doi.org/10.1371/journal.pone.0293369

American Oil Chemists’ Society. (2020). Official methods and recommended practices of the AOCS (7th ed.). AOCS Press.

Anagbogu, C. F., Zhou, J., Olasupo, F. O., Nitsa, M. B., & Beckles, D. M. (2021). Lipidomic and metabolomic profiles of Coffea canephora L. beans cultivated in Southwestern Nigeria. PLoS ONE, 16(2), e0234758. https://doi.org/10.1371/journal.pone.0234758

Bunn, C., Lundy, M., Läderach, P., Fernández, P., & Castro-Llanos, F. (2019). Climate-smart coffee in Uganda. International Center for Tropical Agriculture (CIAT).

Carta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic acid: Physiological role, metabolism and nutritional implications. Frontiers in Physiology, 8, 902. https://doi.org/10.3389/fphys.2017.00902

Cheng, B., Furtado, A., Smyth, H. E., & Henry, R. J. (2016). Influence of genotype and environment on coffee quality. Trends in Food Science & Technology, 57, 20–30. https://doi.org/10.1016/j.tifs.2016.09.003

Clayton, P., Hill, M., Bogoda, N., Subah, S., & Venkatesh, R. (2021). Palmitoylethanolamide: A natural compound for health management. International Journal of Molecular Sciences, 22(10), 5305. https://doi.org/10.3390/ims22105305

Cossignani, L., Montesano, D., Simonetti, M. S., & Blasi, F. (2016). Authentication of Coffea arabica according to triacylglycerol stereospecific composition. Journal of Analytical Methods in Chemistry. https://doi.org/10.1155/2016/7482620

De Oliveira Oto, M. C., Lemaitre, R. N., Sun, Q., King, I. B., Wu, J. H. Y., Manichaikul, A., Rich, S. S., Tsai, M. Y., Chen, Y. D., Fornage, M., Wei Hua, G., Aslibekyan, S., Irvin, M. R., Kabagambe, E. K., Arnett, D. K., Jensen, M. K., McKnight, B., Psaty, B. M., Steffen, L. M., Smith, C. E., Risérus, U., Lind, L., Hu, F. B., Rimm, E. B., Siscovick, D. S., & Mozaffarian, D. (2018). Genome-wide association meta-analysis of circulating odd-numbered chain saturated fatty acids: Results from the CHARGE Consortium. PLoS ONE, 13(5), e0196951. https://doi.org/10.1371/journal.pone.0196951

Dong, W., Tan, L., Zhao, J., Hu, R., & Lu, M. (2015). Characterization of fatty acid, amino acid and volatile compound compositions and bioactive components of seven coffee (Coffea robusta) cultivars grown in Hainan Province, China. Molecules, 20(9), 16687–16708. https://doi.org/10.3390/molecules200916687

European Food Safety Authority. (2018). Scientific and technical assistance on trans fatty acids (EFSA Supporting Publication No. EN-1433). https://doi.org/10.2903/sp.efsa.2018.EN-1433

European Food Safety Authority Panel on Contaminants in the Food Chain (CONTAM). (2016). Scientific opinion on erucic acid in feed and food. EFSA Journal, 14(11), 4593. https://doi.org/10.2903/j.efsa.2016.4593

Ferreira, T., Shuler, J., Guimarães, R., & Farah, A. (2019). Introduction to coffee plant and genetics. In A. Farah (Ed.), Coffee: Production, quality and chemistry (pp. 1–25). Royal Society of Chemistry. https://doi.org/10.1039/9781782622437-00001

Figueiredo, L. P., Borém, F. M., Ribeiro, F. C., Giomo, G. S., Taveira, J. H. S., & Malta, M. R. (2015). Fatty acid profiles and parameters of quality of specialty coffees produced in different Brazilian regions. African Journal of Agricultural Research, 10(35), 3484–3493. https://doi.org/10.5897/AJAR2015.9697

Food and Agriculture Organization of the United Nations. (2022). FAOSTAT statistical database. FAO. https://www.fao.org/faostat/en/#data

French, M. A., Sundram, K., & Clandinin, M. T. (2002). Cholesterolaemic effect of palmitic acid in relation to other dietary fatty acids. Asia Pacific Journal of Clinical Nutrition, 11(Suppl. 7), S401–S407. https://doi.org/10.1046/j.1440-6047.11.s.7.3.x

Gómez Candela, C., Bermejo López, L. M., & Loria Kohen, V. (2011). Importance of a balanced omega-6/omega-3 ratio for the maintenance of health: Nutritional recommendations. Nutrición Hospitalaria, 26(2), 323–329.

Hung, Y. C., Chen, P., & Chen, L. Y. (2018). Advanced classification of coffee beans with fatty acids profiling to block information loss. Symmetry, 10(10), 529. https://doi.org/10.3390/sym10100529

Islam, M. A., Amin, M. N., Siddiqui, S. A., Hossain, P., Sultana, F., & Kabir, R. (2019). Trans fatty acids and lipid profile: A serious risk factor to cardiovascular disease, cancer and diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(2), 1643–1647. https://doi.org/10.1016/j.dsx.2019.03.033

Karamage, F., Zhang, C., Liu, T., Maganda, A., & Isabwe, A. (2017). Soil erosion risk assessment in Uganda. Forests, 8(2), 52. https://doi.org/10.3390/f8020052

Kaur, N., Chugh, V., & Gupta, A. K. (2014). Essential fatty acids as functional components of foods: A review. Journal of Food Science and Technology, 51(10), 2289–2303. https://doi.org/10.1007/s13197-012-0677-0

Li, S., Zhou, T., Li, C., Dai, Z., Che, D., Yao, Y., Li, L., Ma, J., Yang, X., & Gao, G. (2014). High metastatic gastric and breast cancer cells consume oleic acid in an AMPK dependent manner. PLoS ONE, 9(5), e97330. https://doi.org/10.1371/journal.pone.0097330

Marsilani, O. N., Wagiman, & Sukartiko, A. C. (2020). Chemical profiling of western Indonesian single-origin robusta coffee. IOP Conference Series: Earth and Environmental Science, 425(1), Article 012041. https://doi.org/10.1088/1755-1315/425/1/012041

Martín, M. J., Pablos, F., González, A. G., Valdenebro, M. S., & León-Camacho, Y. (2001). Fatty acid profiles as discriminant parameters for coffee varieties differentiation. Talanta, 54(2), 291–297. https://doi.org/10.1016/S0039-9140(00)00647-0

Martini, N. (2021). Borage. Journal of Primary Health Care, 13(3), 289–290. https://doi.org/10.1071/HC19564

Naydenova, N., Kaishev, I., Iliev, T., & Mihaylova, G. (2014). Fatty acids profile, atherogenic and thrombogenic health indices of white brined cheese made from buffalo milk. Agricultural Science and Technology, 6(3), 352–355.

Nogaim, Q. A., Al-Duais, M., Al-Waraf, A., Al-Erianee, H., & Al-Sayadi, M. (2013, December 30). The chemical composition of Yemeni green coffee. Journal of Food Chemistry and Nutrition, 1(2), 42–48.

Nsubuga, F. W., & Rautenbach, H. (2018). Climate change and variability: A review of what is known and ought to be known for Uganda. International Journal of Climate Change Strategies and Management, 10(5), 752–771. https://doi.org/10.1108/ICCSM-04-2017-0090

Oliveira, L. S., Franca, A. S., Mendonça, J. C. F., & Barros-Júnior, M. C. (2006). Proximate composition and fatty acids profile of green and roasted defective coffee beans. LWT – Food Science and Technology, 39(3), 235–239. https://doi.org/10.1016/j.lwt.2005.01.011

Oliveira, P. M. A. de, Almeida, R. H. de, Oliveira, N. A. de, Bostyn, S., Gonçalves, C. B., & Oliveira, A. L. de. (2014). Enrichment of diterpenes in green coffee oil using supercritical fluid extraction: Characterization and comparison with green coffee oil from pressing. The Journal of Supercritical Fluids, 95, 137–145. https://doi.org/10.1016/j.supflu.2014.08.016

Parras, P., Martínez-Tomé, M., Jiménez, A. M., & Murcia, M. A. (2007). Antioxidant capacity of coffees of several origins brewed following three different procedures. Food Chemistry, 102(3), 582–592. https://doi.org/10.1016/j.foodchem.2006.05.037

Raba, D. N., Chambre, D. R., Copolovici, D.-M., Moldovan, C., & Copolovici, L. O. (2018). The influence of high-temperature heating on composition and thermo-oxidative stability of the oil extracted from Arabica coffee beans. PLoS ONE, 13(7), e0200314. https://doi.org/10.1371/journal.pone.0200314

Romano, R., Santini, A., Le Grotaglie, L. L., Manzo, N., Visconti, A., & Ritieni, A. (2014). Identification markers based on fatty acid composition to differentiate between roasted Arabica and Canephora (Robusta) coffee varieties in mixtures. Journal of Food Composition and Analysis, 35(1), 1–9. https://doi.org/10.1016/j.jfca.2014.04.001

Samoggia, A., & Riedel, B. (2019). Consumers’ perceptions of coffee health benefits and motives for coffee consumption and purchasing. Nutrients, 11(3), 653. https://doi.org/10.3390/nu11030653

Speer, K., & Kölling-Speer, I. (2006). The lipid fraction of the coffee bean. Brazilian Journal of Plant Physiology, 18(1), 201–216. https://doi.org/10.1590/S1677-04202006000100014

Tsegay, G., Redi-Abshiro, M., Chandravanshi, B. S., Ele, E., Mohammed, A. M., & Mamo, H. (2020). Effect of altitude of coffee plants on the composition of fatty acids of green coffee beans. BMC Chemistry, 14, 36. https://doi.org/10.1186/s13065-020-00688-0

Wagemaker, T. A., Carvalho, C. R., Maia, N. B., Baggio, S. R., & Filho, O. G. (2011). Sun protection factor, content and composition of lipid fraction of green coffee beans. Industrial Crops and Products, 33(2), 469–473. https://doi.org/10.1016/j.indcrop.2010.10.026

Wołoszyn, J., Haraf, G., Okruszek, A., Wereńska, M., Goluch, Z., & Teleszko, M. (2020). Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poultry Science, 99(2), 1216–1224. https://doi.org/10.1016/j.psj.2019.10.026

Downloads

Published

02-09-2025

How to Cite

Bamuwamye, M. ., Mugabe, A. ., Nakisozi, H. ., Byarugaba-Bazirake, G. W. ., & Ogwok, P. (2025). Faty acid composition of lipids from Ugandan green coffee beans. Food Agricultural Sciences and Technology, 11(3), 272–284. retrieved from https://ph02.tci-thaijo.org/index.php/stej/article/view/255782