Integrating CRISPR-driven pheromones and RNAi production – Possible “savior” for the management of Nilaparvata lugens in rice paddy felds

Authors

  • Nur Syakila Rohawi Agro-Biotechnology Institute (ABI), National Institutes of Biotechnology Malaysia (NIBM), Jalan Bioteknologi, 43400 Serdang, Selangor, Malaysia
  • Nursyuhaida Mohd Hanafi Agro-Biotechnology Institute (ABI), National Institutes of Biotechnology Malaysia (NIBM), Jalan Bioteknologi, 43400 Serdang, Selangor, Malaysia

Keywords:

Nilaparvata lugens, pheromonetargeted management, RNA interference (RNAi) biopesticides, CRISPR technology, integrated pest management (IPM)

Abstract

The brown planthopper (Nilaparvata lugens) is a serious pest affecting rice production worldwide, causing significant economic losses and posing challenges to food security. Traditional and conventional approaches have relied heavily on synthetic insecticides, which have led to increased pest resistance and environmental concerns, highlighting the urgent need for sustainable alternatives. This review discusses innovative strategies that integrate pheromone-targeted approaches and RNA interference (RNAi)-induced biopesticides, enhanced by CRISPR technology. Pheromones, particularly sex pheromones, can disrupt mating behaviours, offering a non-toxic alternative to sustainably reduce pest populations. RNAi biopesticides provide a precision-based solution by silencing essential genes related to pest survival and reproduction, thereby minimizing off-target effects and environmental impacts. Additionally, CRISPR technology enhances these strategies by enabling the synthesis of pheromones independent of insect hosts and facilitating the delivery of RNAi constructs, with potential applications in developing pest-resistant rice varieties. A thorough understanding of the biological and ecological aspects of N. lugens is crucial for evaluating current research on pheromone and RNAi applications within integrated pest management (IPM) frameworks. The challenges and opportunities presented by these innovative approaches necessitate interdisciplinary research to optimize their effectiveness while addressing regulatory and public acceptance concerns. These insights can significantly advance agricultural practices, mitigate rising pest pressures, and enhance both food security and environmental sustainability.

References

Abd El-Ghany, N. M. (2020). Pheromones and chemical communication in insects. In D. Kontogiannatos, A. Kourti, & K. F. Mendes (Eds.), Pests, weeds and diseases in agricultural crop and animal husbandry production (pp. 16–30). IntechOpen. https://doi.org/10.5772/intechopen.92384

Agrawal, N., Dasaradhi, P. V. N., Mohmmed, A., Malhotra, P., Bhatnagar, R. K., & Mukherjee, S. K. (2003). RNA interference: Biology, mechanism, and applications. Microbiology and Molecular Biology Reviews, 67(4), 657–685. https://doi.org/10.1128/MMBR.67.4.657-685.2003

Ahmad, A., Jamil, A., & Munawar, N. (2023). GMOs or non-GMOs? The CRISPR conundrum. Frontiers in Plant Science, 14, 1232938. https://doi.org/10.3389/fpls.2023.1232938

Alemu, M. (2020). Trend of biotechnology applications in pest management: A review. International Journal of Applied Sciences and Biotechnology, 8(2), 108–131. https://doi.org/10.3126/iasbt.v8i2.28326

Andrade, E. C., & Hunter, W. B. (2016). RNA interference—natural gene-based technology for highly specifc pest control (HiSPeC). In I. Y. Abdurakhmonov (Eds.), RNA interference (pp. 391–409). IntechOpen. https://doi.org/10.5772/61612

Ane, N. U., & Hussain, M. (2016). Diversity of insect pests in major rice growing areas of the world. Journal of Entomology and Zoology Studies, 4(1), 36–41.

Arora, N. K., Verma, M., Prakash, J., & Mishra, J. (2016). Regulation of biopesticides: Global concerns and policies. In N. K. Arora, S. Mehnaz, & R. Balestrini (Eds.), Bioformulations: For sustainable agriculture (pp. 283–299). Springer India. https://doi.org/10.1007/978-81-322-2779-3_16

Benelli, G., Lucchi, A., Thomson, D., & Ioriati, C. (2019). Sex pheromone aerosol devices for mating disruption: Challenges for a brighter future. Insects, 10(10), 308. https://doi.org/10.3390/insects10100308

Cabauatan, P. Q., Cabunagan, R. C., & Choi, I.-R. (2009). Rice viruses transmitted by the brown planthopper Nilaparvata lugens Stål. In K. L. Heong & B. Hardy (Eds.), Planthoppers: New threats to the sustainability of intensive rice production systems in Asia (pp. 357–368). International Rice Research Institute. https://www.google.com/search?q=delphacid.s3.amazonaws.com

Caradus, J. R. (2022). Intended and unintended consequences of genetically modifed crops – myth, fact and/ or manageable outcomes? New Zealand Journal of Agricultural Research, 66(6), 519–619. https://doi.org/10.1080/00288233.2022.2141273

Cortes Ortiz, J. A., Ruiz, A. T., Morales-Ramos, J. A., Thomas, M., Rojas, M. G., Tomberlin, J. K., Yi, L., Han, R., Giroud, L., & Jullien, R. L. (2016). Insect mass production technologies. In A. T. Dossey, J. A. Morales-Ramos, & M. G. Rojas (Eds.), Insects as sustainable food ingredients: Production, processing and food applications (pp. 153–201). Academic Press. https://doi.org/10.1016/B978-0-12-802856-8.00006-5

Devos, Y., Álvarez-Alfageme, F., Gennaro, A., & Mestdagh, S. (2016). Assessment of unanticipated unintended effects of genetically modifed plants on non-target organisms: A controversy worthy of pursuit? Journal of Applied Entomology, 140(1–2), 1–10. https://doi.org/10.1111/jen.12248

Diao, X., Reardon, T., Kennedy, A., DeFries, R. S., Koo, J., Minten, B., Takeshima, H., & Thornton, P. (2021). The future of small farms: Innovations for inclusive transformation. In J. von Braun, K. Afsana, L. O. Fresco, & M. H. A. Hassan (Eds.), Science and innovations for food systems transformation (pp. 191–205). Springer Nature. https://doi.org/10.1007/978-3-031-15703-5_10

Dyck, V. A., & Thomas, B. (1979). The brown planthopper problem. In Brown planthopper: Threat to rice production in Asia (pp. 3–17). International Rice Research Institute. https://delphacid.s3.amazonaws.com/5800.pdf

EFSA Panel on Genetically Modifed Organisms, Naegeli, H., Bresson, J. L., Dalmay, T., Dewhurst, I. C., Epstein, M. M., Guerche, P., Hejatko, J., Moreno, F. J., & Mullins, E. (2020). Adequacy and suffciency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modifed insects containing engineered gene drives. EFSA Journal, 18(11), e06297. https://doi.org/10.2903/j.efsa.2020.6297

EFSA Panel on Plant Health, Bragard, C., Baptista, P., Chatzivassiliou, E., Di Serio, F., Gonthier, P., Jaques Miret, J. A., Justesen, A. F., Magnusson, C. S., Milonas, P., Navas-Cortes, J. A., Parnell, S., Potting, R., Reignault, P. L., Stefani, E., Thulke, H.-H., Van der Werf, W., Vicent Civera, A., Yuen, J., Zappalà, L., Grégoire, J.-C., Malumphy, C., Kertesz, V., Maiorano, A., & MacLeod, A. (2023). Pest categorisation of Nilaparvata lugens. EFSA Journal, 21(5), e07999. https://doi.org/10.2903/j.efsa.2023.7999

Fărcaș, A. C. (2024). Food safety in cereal grains: Contaminants, legislation, and mitigation strategies. In A. Dasari & M. Moussourakis (Eds.), Food safety and quality (Vol. 24). IntechOpen. https://doi.org/10.5772/intechopen.1207360

Ferreira, O. O., Moreira, M. S., Franco, C. d. J. P., de Oliveira, M. S., & de Aguiar Andrade, E. H. (2024). Chemistry of sex pheromones and their role in integrated pest management. In R. Kumar, M. S. de Oliveira, E. H. de Aguiar Andrade, D. C. Suyal, & R. Soni (Eds.), Biorationals and Biopesticides: Pest Management (pp. 95–106). De Gruyter. https://doi.org/10.1515/9783111204819-005

Gjerris, M., Kornum, A., Röcklinsberg, H., & Sørensen, D. B. (Eds.). (2023). Biotech animals in research: Ethical and regulatory aspects. CRC Press. https://doi.org/10.1201/9780429428845

Greaves, J. (2009). Biopesticides, regulatory innovation and the regulatory state. Public Policy and Administration, 24(3), 245–264. https://doi.org/10.1177/0952076709103810

Hagström, Å. K., Wang, H.-L., Liénard, M. A., Lassance, J.-M., Johansson, T., & Löfstedt, C. (2013). A moth pheromone brewery: Production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory. Microbial Cell Factories, 12(1), 125. https://doi.org/10.1186/1475-2859-12-125

Handford, C. E., Elliot, C. T., & Campbell, K. (2015). A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integrated Environmental Assessment and Management, 11(4), 525–536. https://doi.org/10.1002/ieam.1635

Hashimy, S. Q., & Benjamin, M. S. (2024). Intellectual property and biotechnology: A dual driver of agricultural transformation. JSS Journal for Legal Studies and Research, 10(2), 1–32. https://doi.org/10.2139/ssrn.5015935

Hassanien, A., Saadaoui, I., Schipper, K., Al-Marri, S., Dalgamouni, T., Aouida, M., Saeed, S., & Al-Jabri, H. M. (2023). Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/Cas9: A review. Frontiers in Bioengineering and Biotechnology, 10, 1104914. https://doi.org/10.3389/fioe.2022.1104914

He, W., Yang, M., Li, Z., Qiu, J., Liu, F., Qu, X., Qiu, Y., & Li, R. (2015). High levels of silicon provided as a nutrient in hydroponic culture enhances rice plant resistance to brown planthopper. Crop Protection, 67, 20–25. https://doi.org/10.1016/j.cropro.2014.09.013

Holkenbrink, C., Ding, B.-J., Wang, H.-L., Dam, M. I., Petkevicius, K., Kildegaard, K. R., Wenning, L., Sinkwitz, C., Lorántfy, B., Koutsoumpeli, E., França, L., Pires, M., Bernardi, C., Urrutia, W., Mafra-Neto, A., Ferreira, B. S., Raptopoulos, D., Konstantopoulou, M., Löfstedt, C., & Borodina, I. (2020). Production of moth sex pheromones for pest control by yeast fermentation. Metabolic Engineering, 62, 312–321. https://doi.org/10.1016/j.ymben.2020.10.001

Hong, J., Lee, M., Kim, Y., Lee, Y.-S., Wee, J., Park, J.-J., Lee, W.-K., Song, Y., & Cho, K. (2024). Potential range shift of a long-distance migratory rice pest, Nilaparvata lugens, under climate change. Scientific Reports, 14(1), Article 11531. https://doi.org/10.1038/s41598-024-62266-x

Horgan, F. G., de Freitas, T. F. S., Crisol-Martínez, E., Mundaca, E. A., & Bernal, C. C. (2021). Nitrogenous fertilizer reduces resistance but enhances tolerance to the brown planthopper in fastgrowing, moderately resistant rice. Insects, 12(11), 989. https://doi.org/10.3390/insects12110989

International Rice Research Institute. (1979). Brown planthopper: Threat to rice production in Asia. Author. http://books.irri.org/9711040220_content.pdf

International Rice Research Institute. (2023). Planthopper. IRRI Rice Knowledge Bank. http://www.knowledgebank.irri.org/training/fact-sheets/pest-management/insects/item/planthopper

Isnawan, B. H., & Ramadhanti, R. (2021). Insect population in rice ecosystems with various types of irrigation and local rice varieties. IOP Conference Series: Earth and Environmental Science, 752(1), 012011. https://doi.org/10.1088/1755-1315/752/1/012011

Jena, K. K., & Kim, S.-M. (2010). Current status of brown planthopper (BPH) resistance and genetics. Rice, 3(3), 161–171. https://doi.org/10.1007/s12284-010-9050-y

Jena, M., Pandi, G. P., Adak, T., Rath, P. C., Gowda, B. G., Patil, N. B., Prasanthi, G., & Mohapatra, S. D. (2018). Paradigm shif of insect pests in rice ecosystem and their management strategy. ORYZA: An International Journal on Rice, 55(Special Issue), 82–89. https://doi.org/10.5958/2249-5266.2018.00010.3

Ji, R., Yu, H., Fu, Q., Chen, H., Ye, W., Li, S., & Lou, Y. (2013). Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. PLOS ONE, 8(11), e79612. https://doi.org/10.1371/journal.pone.0079612

Jiang, Y., Ma, J., Wei, Y., Liu, Y., Zhou, Z., Huang, Y., Wang, P., & Yan, X. (2022). De novo biosynthesis of sex pheromone components of Helicoverpa armigera through an artifcial pathway in yeast. Green Chemistry, 24(2), 767–778. https://doi.org/10.1039/D1GC02965G

Jing, S., Yang, J., Liu, Y., Wang, F., Zheng, F., Ren, A., Yu, B., Zhao, Y., Jia, B., & Chen, R. (2024). Functional analysis of CPSF30 in Nilaparvata lugens using RNA interference reveals its essential role in development and survival. Insects, 15(11), Article 860. https://doi.org/10.3390/insects15110860

Jing, S., Wang, F., Ren, A., Zheng, F., Yu, B., Xu, J., Liu, Y., Yang, J., Chen, R., & Zeng, W. (2024). Identifcation and functional analysis of three NlCstF genes in Nilaparvata lugens. Insects, 15(11), Article 867. https://doi.org/10.3390/insects15110867

Kansal, R. (2024). The CRISPR-Cas system and clinical applications of CRISPR-based gene editing in hematology with a focus on inherited germline predisposition to hematologic malignancies. Genes, 15(7), Article 863. https://doi.org/10.3390/genes15070863

Kikuta, S., Nakamura, Y., Hatori, M., Sato, R., Kikawada, T., & Noda, H. (2015). Herbivoryinduced glucose transporter gene expression in the brown planthopper, Nilaparvata lugens. Insect Biochemistry and Molecular Biology, 64, 60–67. https://doi.org/10.1016/j.ibmb.2015.07.015

Knipple, D. C., Rosenfeld, C.-L., Miller, S. J., Liu, W., Tang, J., Ma, P. W., & Roelofs, W. L. (1998). Cloning and functional expression of a cDNA encoding a pheromone gland-specifc acyl-CoA Δ¹¹-desaturase of the cabbage looper moth, Trichoplusia ni. Proceedings of the National Academy of Sciences, 95(26), 15287–15292. https://doi.org/10.1073/pnas.95.26.15287

Kogan, M. (1998). Integrated pest management: Historical perspectives and contemporary developments. Annual Review of Entomology, 43(1), 243-270. https://doi.org/10.1146/annurev.ento.43.1.243

Kourti, A., Swevers, L., & Kontogiannatos, D. (2017). In search of new methodologies for efcient insect pest control: The RNAi ”movement”. In V. D. C. Shields (Ed.), Biological control of pest and vector insects (pp. 71–95). IntechOpen. https://doi.org/10.5772/66633

Krishnaiah, K., & Varma, N. R. G. (2010). Changing insect pest scenario in the rice ecosystem—A national perspective. Rice Knowledge Management Portal. Retrieved from http://www.rkmp.co.in

Kumari, D., Duhan, L., Manoharlal, R., Prasad, G. S., & Hanafah, M. M. (2023). Green technologies for crop-pest control. In V. Kumar, K. Tsatsaragkou, & N. Asim (Eds.), Green chemistry in agriculture and food production (pp. 29–55). CRC Press. https://doi.org/10.1201/9780429289538

Kurniawati, Y. T., Febrianti, W. N., Novidiarsih, C. I., Jumantoro, G., & Mukhtar, K. (2023). Loss of rice yields due to rice ragged stunt virus (RRSV) on several varieties (Inpari 32, Inpari 42, Inpari 16, and Ciherang) in Madiun. Nusantara Science and Technology Proceedings, 3(1), 40–44. https://doi.org/10.11594/nstp.2023.3207

Leung, R. K., & Whitaker, P. A. (2005). RNA interference: From gene silencing to gene-specifc therapeutics. Pharmacology & Therapeutics, 107(2), 222–239. https://doi.org/10.1016/j.pharmthera.2005.03.004

Li, K. L., Yuan, S. Y., Nanda, S., Wang, W. X., Lai, F. X., Fu, Q., & Wan, P. J. (2018). The roles of E93 and Kr-h1 in metamorphosis of Nilaparvata lugens. Frontiers in Physiology, 9, 1677. https://doi.org/10.3389/fphys.2018.01677

Li, Z., Liu, J., Nanda, S., Zhong, Z., Luo, X., Zhou, X., Zhang, Y., Yang, C., & Pan, H. (2025). RNAi effect in target and non-target pests correlates with the length of continuous matches in dsRNA sequences. Pesticide Biochemistry and Physiology, 210, Article 106381. https://doi.org/10.1016/j.pestbp.2025.106381

Li, Z., Xu, B., Du, T., Ma, Y., Tian, X., Wang, F., & Wang, W. (2021). Excessive nitrogen fertilization favors the colonization, survival, and development of Sogatella furcifera via botom-up effects. Plants, 10(5), 875. https://doi.org/10.3390/plants10050875

Liu, K., Su, Q., Kang, K., Chen, M., Wang, W.-X., Zhang, W.-Q., & Pang, R. (2021). Genome-wide analysis of alternative gene splicing associated with virulence in the brown planthopper Nilaparvata lugens (Hemiptera: Delphacidae). Journal of Economic Entomology, 114(6), 2512–2523. https://doi.org/10.1093/jee/toab186

Lockwood, A. H. (2004). Human testing of pesticides: Ethical and scientifc considerations. American Journal of Public Health, 94(11), 1908–1916. https://doi.org/10.2105/AJPH.94.11.1908

Löfstedt, C., & Xia, Y.-H. (2021). Biological production of insect pheromones in cell and plant factories. In G. J. Blomquist & R. G. Vogt (Eds.), Insect pheromone biochemistry and molecular biology (2nd ed., pp. 89–121). Elsevier. https://doi.org/10.1016/B978-0-12-819628-1.00003-1

Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J. M., Wolf, Y. I., Yakunin, A. F., van der Oost, J., & Koonin, E. V. (2011). Evolution and classifcation of the CRISPR–Cas systems. Nature Reviews Microbiology, 9(6), 467–477. https://doi.org/10.1038/nrmicro2577

Min, B. E., Hwang, H. G., Lim, H. G., & Jung, G. Y. (2017). Optimization of industrial microorganisms: Recent advances in synthetic dynamic regulators. Journal of Industrial Microbiology & Biotechnology, 44(1), 89–98. https://doi.org/10.1007/s10295-016-1867-y

Na Phatthalung, T., & Tangkananond, W. (2021). Rice grassy stunt virus-free and pathogenic rice plants affect the brown planthopper (Nilaparvata lugens Stål) life cycle. Agriculture and Natural Resources, 55(3), 331–340. https://li01.tci-thaijo.org/index.php/anres/article/view/251403

National Academies of Sciences, Engineering, and Medicine. (2016). Genetically engineered crops: Experiences and prospects. National Academies Press. https://doi.org/10.17226/23395

Oo, S. S., Hmwe, K. M., Aung, N. N., Su, A. A., Soe, K. K., Mon, T. L., Lwin, K. M., Thu, M. M., Soe, T. T., & Htwe, M. L. (2020). Diversity of insect pest and predator species in monsoon and summer rice felds of Taungoo Environs, Myanmar. Advances in Entomology, 8(3), 117–129. https://doi.org/10.4236/ae.2020.83009

Petkevicius, K., Koutsoumpeli, E., Betsi, P. C., Ding, B. J., Kildegaard, K. R., Jensen, H., Mezo, N., Mazziotta, A., Gabrielsson, A., Sinkwitz, C., & Borodina, I. (2021). Biotechnological production of the European corn borer sex pheromone in the yeast Yarrowia lipolytica. Biotechnology Journal, 16(6), 2100004. https://doi.org/10.1002/biot.202100004

Petkevicius, K., Löfstedt, C., & Borodina, I. (2020). Insect sex pheromone production in yeasts and plants. Current Opinion in Biotechnology, 65, 259–267. https://doi.org/10.1016/j.copbio.2020.07.011

Petkevicius, K., Wenning, L., Kildegaard, K. R., Sinkwitz, C., Smedegaard, R., Holkenbrink, C., & Borodina, I. (2022). Biosynthesis of insect sex pheromone precursors via engineered β-oxidation in yeast. FEMS Yeast Research, 22(1), foac041. https://doi.org/10.1093/femsyr/foac041

Pickar-Oliver, A., & Gersbach, C. A. (2019). The next generation of CRISPR–Cas technologies and applications. Nature Reviews Molecular Cell Biology, 20(8), 490–507. https://doi.org/10.1038/s41580-019-0131-5

Prakash, A., Bentur, J. S., Prasad, M. S., Tanwar, R. K., Sharma, O. P., Bhagat, S., Sehgal, M., Singh, S. P., Singh, M., Chattopadhyay, C., Sushil, S. N., Sinha, A. K., Asre, R., Kapoor, K. S., Satyagopal, K., & Jeyakumar, P. (2014). Integrated pest management for rice. National Institute of Plant Health Management. https://niphm.gov.in/IPMPackages/Rice.pdf

Qaim, M. (2020). Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Economic Perspectives and Policy, 42(2), 129–150. https://doi.org/10.1002/aepp.13044

Rizvi, S. A. H., George, J., Reddy, G. V. P., Zeng, X., & Guerrero, A. (2021). Latest developments in insect sex pheromone research and its application in agricultural pest management. Insects, 12(6), Article 484. https://doi.org/10.3390/insects12060484

Rout, P., Ravindranath, N., Gaikwad, D., & Nanda, S. (2023). Unveiling Nilaparvata lugens Stål genes defning compatible and incompatible interactions with rice through transcriptome analysis and gene silencing. Current Issues in Molecular Biology, 45(8), 6790–6803. https://doi.org/10.3390/cimb45080429

Sarkar, S. C., Wang, E., Wu, S., & Lei, Z. (2018). Application of trap cropping as companion plants for the management of agricultural pests: A review. Insects, 9(4), 128–144. https://doi.org/10.3390/insects9040128

Savary, S., Willocquet, L., Elazegui, F. A., Castilla, N. P., & Teng, P. S. (2000). Rice pest constraints in tropical Asia: Quantifcation of yield losses due to rice pests in a range of production situations. Plant Disease, 84(3), 357–369. https://doi.org/10.1094/PDIS.2000.84.3.357

Schurman, R., & Munro, W. A. (2010). Fighting for the future of food: Activists versus agribusiness in the struggle over biotechnology. University of Minnesota Press.

Shams, A., Fischer, A., Bodnar, A., & Kliegman, M. (2024). Perspectives on genetically engineered microorganisms and their regulation in the United States. ACS Synthetic Biology, 13(5), 1412–1423. https://doi.org/10.1021/acssynbio.4c00048

Shi, L., Zhang, J., Qiu, L., Jiang, Z., Xie, Z., & Zhan, Z. (2021). Behavioral changes in the brown planthopper, Nilaparvata lugens, mediated by melatonin. CABI Agriculture and Bioscience, 2, Article 16. https://doi.org/10.1186/s43170-021-00035-w

Singh, K. K., Ishar, A. K., Singh, S., Changdeo, W. B., Kashyap, S., Saini, K., Ramesh, G., & Swamy, G. N. (2024). The role of biotechnology in shaping the future of modern agriculture. Journal of Advances in Biology & Biotechnology, 27(11), 621–634. https://doi.org/10.9734/jabb/2024/v27i111646

Sorensen, P. W., & Baker, C. (2014). Species‐specifc pheromones and their roles in shoaling, migration, and reproduction: A critical review and synthesis. In P. W. Sorensen & B. D. Wisenden (Eds.), Fish pheromones and related cues (pp. 11–32). Wiley. https://doi.org/10.1002/9781118794739.ch2

Syngenta. (2023). Rice pest in India: The importance of brown planthopper control. Syngenta India. https://www.syngenta.co.in/brown-planthopper-management

Tyagi, S., Narayana, S., Singh, R., Srivastava, C., Twinkle, S., Das, S. K., & Jeer, M. (2022). Migratory behaviour of brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), in India as inferred from genetic diversity and reverse trajectory analysis. 3 Biotech, 12(10), 266. https://doi.org/10.1007/s13205-022-03337-6

USDA Economic Research Service. (2023, September 9). Rice sector at a glance. U.S. Department of Agriculture. https://www.ers.usda.gov/topics/crops/rice/rice-sector-at-a-glance/

Vatanparast, M., & Kim, Y. (2019). Yeast engineering to express sex pheromone gland genes of the oriental fruit moth, Grapholita molesta. Journal of Asia-Pacifc Entomology, 22(3), 645–654. https://doi.org/10.1016/j.aspen.2019.04.009

Veres, A., Wyckhuys, K. A. G., Kiss, J., Tóth, F., Burgio, G., Pons, X., Avilla, C., Vidal, S., Razinger, J., Bazok, R., Matyjaszczyk, E., Milosavljević, I., Le, X. V., Zhou, W., Zhu, Z.-R., Tarno, H., Hadi, B., Lundgren, J., Bonmatin, J.-M., Bijleveld van Lexmond, M., Aebi, A., Rauf, A., & Furlan, L. (2020). An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: Alternatives in major cropping systems. Environmental Science and Pollution Research, 27(24), 29867–29899. https://doi.org/10.1007/s11356-020-09279-x

Wagner, J. M., & Alper, H. S. (2016). Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genetics and Biology, 89, 126–136. https://doi.org/10.1016/j.fgb.2015.12.001

Wang, R., Zhang, C., Zou, Y., Lu, L., & Cheng, X. (2000). Effect of rice variety resistance on population dynamics of Nilaparvata lugens and Sogatella furcifera. Ying Yong Sheng Tai Xue Bao = The Journal of Applied Ecology, 11(6), 861–865.

Wang, W.-X., Li, K.-L., Chen, Y., Lai, F.-X., & Fu, Q. (2015). Identifcation and function analysis of enolase gene NlEno1 from Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Journal of Insect Science, 15(1), 66. https://doi.org/10.1093/jisesa/iev046

Wani, S. H., Choudhary, M., Barmukh, R., Bagaria, P. K., Samantara, K., Razzaq, A., Jaba, J., Ba, M. N., & Varshney, R. K. (2022). Molecular mechanisms, genetic mapping, and genome editing for insect pest resistance in feld crops. Theoretical and Applied Genetics, 135(11), 3875–3895. https://doi.org/10.1007/s00122-022-04060-9

Williams, T. C., Peng, B., Vickers, C. E., & Nielsen, L. K. (2016). The Saccharomyces cerevisiae pheromone-response is a metabolically active stationary phase for bio-production. Metabolic Engineering Communications, 3, 142–152. https://doi.org/10.1016/j.meteno.2016.05.001

Witzgall, P., Kirsch, P., & Cork, A. (2010). Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36(1), 80–100. https://doi.org/10.1007/s10886-009-9737-y

Xiao, H., Yuan, Z., Guo, D., Hou, B., Yin, C., Zhang, W., & Li, F. (2015). Genome-wide identifcation of long noncoding RNA genes and their potential association with fecundity and virulence in rice brown planthopper, Nilaparvata lugens. BMC Genomics, 16, 1-16.

Xue, W.-H., Xu, N., Yuan, X.-B., Chen, H.-H., Zhang, J.-L., Fu, S.-J., Zhang, C.-X., & Xu, H.-J. (2018). CRISPR/Cas9-mediated knockout of two eye pigmentation genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Biochemistry and Molecular Biology, 93, 19–26. https://doi.org/10.1016/j.ibmb.2017.12.003

Ye, C., Feng, Y., Yu, F., Jiao, Q., Wu, J., Ye, Z., Zhang, P., Sun, C., Pang, K., Hao, P., & Yu, X. (2021). RNAi-mediated silencing of the autophagy-related gene NlATG3 inhibits survival and fecundity of the brown planthopper, Nilaparvata lugens. Pest Management Science, 77(10), 4658–4668. https://doi.org/10.1002/ps.6507

Yeung, M. T., Kerr, W. A., Coomber, B., Lantz, M., & McConnell, A. (2017). Retreat from harmonization: Trade uncertainties arising from divergent maximum residue limits for pesticides. Journal of World Trade, 51(5), 883–905. https://doi.org/10.54648/trad2017035

Yu, H., Ji, R., Ye, W., Chen, H., Lai, W., Fu, Q., & Lou, Y. (2014). Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens) populations with different virulence levels in rice. PLoS ONE, 9(2), e88528. https://doi.org/10.1371/journal.pone.0088528

Zarrabian, M., & Sherif, S. M. (2024). Silence is not always golden: A closer look at potential environmental and ecotoxicological impacts of largescale dsRNA application. Science of the Total Environment, 950, 175311. https://doi.org/10.1016/j.scitotenv.2024.175311

Zhang, M., Hu, Y., Liu, J., Guan, Z., & Zhang, W. (2023). CRISPR/Cas9-mediated genome editing of gustatory receptor NlugGr23a causes male sterility in the brown planthopper Nilaparvata lugens. International Journal of Biological Macromolecules, 241, 124612. https://doi.org/10.1016/j.ijbiomac.2023.124612

Zhang, Y. C., Gao, Y., Ye, W. N., Peng, Y. X., Zhu, K. Y., & Gao, C. F. (2023). CRISPR/Cas9-mediated knockout of NlCYP6CS1 gene reveals its role in detoxifcation of insecticides in Nilaparvata lugens (Hemiptera: Delphacidae). Pest Management Science, 79(6), 2239–2246. https://doi.org/10.1002/ps.7404

Zhu, J., Zhu, K., Li, L., Li, Z., Qin, W., Park, Y., & He, Y. (2020). Proteomics of the honeydew from the brown planthopper and green rice leafhopper reveal they are rich in proteins from insects, rice plant and bacteria. Insects, 11(9), 582. https://doi.org/10.3390/insects11090582

Zhuo, J.-C., Xue, J., Lu, J.-B., Huang, H.-J., Xu, H.-J., & Zhang, C.-X. (2017). Effect of RNAi-mediated knockdown of NlTOR gene on fertility of male Nilaparvata lugens. Journal of Insect Physiology, 98, 149–159. https://doi.org/10.1016/j.jinsphys.2017.01.002

Downloads

Published

02-09-2025

How to Cite

Rohawi, N. S., & Mohd Hanafi, N. . (2025). Integrating CRISPR-driven pheromones and RNAi production – Possible “savior” for the management of Nilaparvata lugens in rice paddy felds. Food Agricultural Sciences and Technology, 11(3), 221–243. retrieved from https://ph02.tci-thaijo.org/index.php/stej/article/view/256589