การพัฒนาโปรแกรมการตัดฟิล์มตามรูปแบบคณิตศาสตร์ที่เหมาะสม
Main Article Content
บทคัดย่อ
งานวิจัยในครั้งนี้มีวัตถุประสงค์เพื่อ 1) ศึกษารูปแบบทางคณิตศาสตร์ที่ใช้ขั้นตอนวิธีเชิงพันธุกรรมที่เหมาะสมกับการตัดแผ่นฟิล์ม 2) พัฒนาโปรแกรมการตัดฟิล์มตามรูปแบบทางคณิตศาสตร์ที่ได้ศึกษา 3) ศึกษาประสิทธิภาพของโปรแกรมที่ได้พัฒนาขึ้น เครื่องมือการวิจัย คือ รูปแบบทางคณิตศาสตร์ที่ใช้ขั้นตอนวิธีทางพันธุกรรม และโปรแกรมการตัดฟิล์ม สถิติที่ใช้ในการวิจัย คือ ร้อยละ
ผลการวิจัย พบว่า โปรแกรมที่พัฒนาขึ้นตามตัวแบบทางคณิตศาสตร์ที่ได้สังเคราะห์ ลดเวลาคำนวณจากเดิมเมื่อคำนวณด้วยมนุษย์ 51 เท่า (5,185%) และใช้เวลาในการผลิตจากการตั้งใบมีดน้อยลงโดยเฉลี่ยร้อยละ 13
Article Details
How to Cite
บท
บทความวิจัย
References
[1] J. Gaffney, D. A. Green and C.E.M., (EMAC2009). (2010). Pearce Binary versus real coding for genetic algorithm : A false dichotomy?. np : ANZIAM J. 51.
[2] Sugi Masao, Yusuke Shiomi, Tsuyoshi Okubo, Kazuyoshi Inoue and Jun Ota. (2010). “A Solution for 2D Rectangular Cutting Stock Problems with 3-Stage Guillotine-Cutting Constraint,” Int. J. of Automation Technology Vol.4 No.5.
[3] Chauny Fabien, Richard Loulou, Sylvie Sadones and Francois Soumis. (1991). A Two-phase Heuristic for the Two-dimensional Cutting-stock Problem. Great Britain. : Operational Research Society Ltd.
[4] Jahromi HMA Meghdad, Reza Tavakkoli-Moghaddam, Ahmad Makui and Abbas Shamsi. (2012). Solving an one-dimensional cutting stock problem by simulated annealing and tabu search. United States. : Journal of Industrial Engineering International.
[5] Rodrigo W.N.P, W.B Daundasekera and A.A.I Perera. Apr-May (2012). “Pattern Generation for Two-dimensional Cutting Stock Problem with Location,” np. : Indian Journal of Computer Science and Engineering (IJCSE). Vol. 3 No. 2.
[6] Paul E. Sweeney and Robert W. Haessler. (1990). One-dimensional cutting stock decisions for rolls with multiple quality grades. USA. : Business School, University of Michigan.
[7] Mir-Bahador Aryanezhad, Nima Fakhim Hashemi, Ahmad Makui and Hasan Javanshir. (2012). A simple approach to the two-dimensional guillotine cutting stock problem. : Journal of Industrial Engineering International.
[8] P. C. Gilmore and R. E. Gomor. (1964). Multistage Cutting Problems of Two and Mord Dimensions. New York. : Thomas J. Watson Research Center, Yorktown Heigh.
[9] Hassan Javanshir, Shaghayegh Rezaei, Saeid Sheikhzadeh Najar & S. S. Ganji. August (2010). Two Dimensional Cutting Stock Management in Fabric Industries and Optimizing the Large Object’s Length. Np : IJRRAS.
[10] M. M. Malik, J. H. Taplin, M. Qiu. (2013). “Variants of the Cutting Stock Problem and The Solution Methods,” np : International Journal of Economics and Economics and Finance Studies. Vol. 5 No. 2.
[11] G. Belov and G. Scheithauer. September 23, 2003, The Number of Setups (Different Patterns) in One-Dimensional Stock Cutting. : Dresden University.
[12] Robert W. Haessler and Paul E. Sweeney. (1991). Cutting stock problems and solution procedures. USA : The University of Michigan, Ann Arbor, Mi.
[13] Ko-Hsin Liang, Xin Yao, Charles Newton and David Hoffman. (2002). A new evolutionary approach to cutting stock problems with and without contiguity. np : Computers & Operations Research 29.
[14] Silvio Alexandre de Araujo, Kelly Cristina Poldi and Jim Smith. (2014). A Genetic Algorithm for the One-Dimensional Cutting Stock Problem with Setups. Brazil : Brazilian Operations Research Society.
[15] Hinterding Robert & Lutfar Khan. (1994). Genetic Algorithms for Cutting Stock Problems: with and without Contiguity. Australia. : Proceedings of AI'94 Worshop on Evolutionary Computation, Lecture Notes in Computer Science, Springer-Verlag.
[16] Vassilios Petridis, Spyros Kazarlis and Anastasios Bakirtzis. OCTOBER 1998. Varying Fitness Functions in Genetic Algorithm Constrained Optimization : The Cutting Stock and Unit Commitment Problems. USA. : IEEE TRANSATIONS ON SYSTEMS, MAN, AND CYBERNETICS- PART B: CYBERNETICS, VOL. 28, NO
[17] Reeves Colin. (1996). Hybrid Genetic Algorithms fior Bin-packing and Related Problems. UK. : School of Mathematical and Information Sciences Coventry University.
[2] Sugi Masao, Yusuke Shiomi, Tsuyoshi Okubo, Kazuyoshi Inoue and Jun Ota. (2010). “A Solution for 2D Rectangular Cutting Stock Problems with 3-Stage Guillotine-Cutting Constraint,” Int. J. of Automation Technology Vol.4 No.5.
[3] Chauny Fabien, Richard Loulou, Sylvie Sadones and Francois Soumis. (1991). A Two-phase Heuristic for the Two-dimensional Cutting-stock Problem. Great Britain. : Operational Research Society Ltd.
[4] Jahromi HMA Meghdad, Reza Tavakkoli-Moghaddam, Ahmad Makui and Abbas Shamsi. (2012). Solving an one-dimensional cutting stock problem by simulated annealing and tabu search. United States. : Journal of Industrial Engineering International.
[5] Rodrigo W.N.P, W.B Daundasekera and A.A.I Perera. Apr-May (2012). “Pattern Generation for Two-dimensional Cutting Stock Problem with Location,” np. : Indian Journal of Computer Science and Engineering (IJCSE). Vol. 3 No. 2.
[6] Paul E. Sweeney and Robert W. Haessler. (1990). One-dimensional cutting stock decisions for rolls with multiple quality grades. USA. : Business School, University of Michigan.
[7] Mir-Bahador Aryanezhad, Nima Fakhim Hashemi, Ahmad Makui and Hasan Javanshir. (2012). A simple approach to the two-dimensional guillotine cutting stock problem. : Journal of Industrial Engineering International.
[8] P. C. Gilmore and R. E. Gomor. (1964). Multistage Cutting Problems of Two and Mord Dimensions. New York. : Thomas J. Watson Research Center, Yorktown Heigh.
[9] Hassan Javanshir, Shaghayegh Rezaei, Saeid Sheikhzadeh Najar & S. S. Ganji. August (2010). Two Dimensional Cutting Stock Management in Fabric Industries and Optimizing the Large Object’s Length. Np : IJRRAS.
[10] M. M. Malik, J. H. Taplin, M. Qiu. (2013). “Variants of the Cutting Stock Problem and The Solution Methods,” np : International Journal of Economics and Economics and Finance Studies. Vol. 5 No. 2.
[11] G. Belov and G. Scheithauer. September 23, 2003, The Number of Setups (Different Patterns) in One-Dimensional Stock Cutting. : Dresden University.
[12] Robert W. Haessler and Paul E. Sweeney. (1991). Cutting stock problems and solution procedures. USA : The University of Michigan, Ann Arbor, Mi.
[13] Ko-Hsin Liang, Xin Yao, Charles Newton and David Hoffman. (2002). A new evolutionary approach to cutting stock problems with and without contiguity. np : Computers & Operations Research 29.
[14] Silvio Alexandre de Araujo, Kelly Cristina Poldi and Jim Smith. (2014). A Genetic Algorithm for the One-Dimensional Cutting Stock Problem with Setups. Brazil : Brazilian Operations Research Society.
[15] Hinterding Robert & Lutfar Khan. (1994). Genetic Algorithms for Cutting Stock Problems: with and without Contiguity. Australia. : Proceedings of AI'94 Worshop on Evolutionary Computation, Lecture Notes in Computer Science, Springer-Verlag.
[16] Vassilios Petridis, Spyros Kazarlis and Anastasios Bakirtzis. OCTOBER 1998. Varying Fitness Functions in Genetic Algorithm Constrained Optimization : The Cutting Stock and Unit Commitment Problems. USA. : IEEE TRANSATIONS ON SYSTEMS, MAN, AND CYBERNETICS- PART B: CYBERNETICS, VOL. 28, NO
[17] Reeves Colin. (1996). Hybrid Genetic Algorithms fior Bin-packing and Related Problems. UK. : School of Mathematical and Information Sciences Coventry University.