Forecasting the trend of foreign exchange rates using time series analysis techniques

Main Article Content

Samorn Aod Lekkla

Abstract

Forecasting exchange rates from the foreign exchange market is a challenging research. The exchange rate forecast will be very beneficial to investors. Currently, time series techniques play a role in forecasting future data. The purpose of this research is to study and compare the efficiency of the models for predicting foreign exchange rates.In this paper, Using the upward trend of exchange rates.  From. February 2014 to January 2017 were used. four techniques including  Linear Regression (LR), Multi-Layer 9 Perceptron (MLP), Support Vector Machine  Regression (SVMR) and Sequential Minimal Optimization Regression (SMOR)  were employed. Sliding Windows was used to divide data into learning and testing sets. In this paper, 12 rounds of sliding windows were used to reduce the variance of experiment results. Moreover, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were used to measure performance of the models. The experiment result showed that SVMR technique is superior to LR, MLP and SMOR. The MAE and RMSE values of SVMR are the lowest which are were as low as 1.11 ± 2.10 and 1.13 ± 2.14, respectively.

Article Details

How to Cite
Lekkla, S. A. (2019). Forecasting the trend of foreign exchange rates using time series analysis techniques. Journal of Technology Management Rajabhat Maha Sarakham University, 5(2), 94–103. retrieved from https://ph02.tci-thaijo.org/index.php/itm-journal/article/view/118652
Section
บทความวิจัย

References

broker, f. (2017). ฟอร์เรกซ์(Forex ) คืออะไร. Retrieved 10 ตุลาคม 2017, from http://www.forexbroker.in.th/
Chih-Chung Chang, C.-J. L. (March 4, 2013). LIBSVM: A Library for Support Vector Machines. Department of Computer Science National Taiwan University.
Forex-Thailand. (2017). แนวโน้มคืออะไร. Retrieved 10 มกราคม 2018, from http://forex-thailand.in.th/index.php?page_id=47701
forexinthai.blogspo. (2016). LEARNING FOREX. Retrieved 10 October, 2017, from http://forexinthai.blogspot.com/
Frank, E. (04/2014). Fully Supervised Training of Gaussian Radial
Basis Function Networks in WEKA. Department of Computer Science, The University of Waikato.
Jin-Fang Yang, Y.-J. Z., Da-Ping Xu. (2007). SMO Algorithm Applied in Time Series Model Building and Forecast. IEEE. doi: 10.1109/ICMLC.2007.4370546
Nurul Asyikin Zainal, Z. M. (2016a). Developing a gold price predictive analysis using Grey Wolf Optimizer. IEEE. doi: 10.1109/SCORED.2016.7810031
Nurul Asyikin Zainal, Z. M. (2016b). Developing a gold price predictive analysis using Grey Wolf Optimizer. Research and Development (SCOReD), 2016 IEEE Student Conference on. doi: 10.1109/SCORED.2016.7810031
S.K. Shevade, S. S. K., C. Bhattacharyya,K.R.K. Murthy. (Sep 2000). Improvements to the SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 11(5), 1188 - 1193. doi: 10.1109/72.870050
Yazdani-Chamzini, H. M. a. A. (2015). Modeling Gold Price via Artificial Neural Network Journal of Economics Business and Management, 3(7), 703.
นิตยา เกิดแย้ม. (2559). การพยากรณ์ปริมาณการใช้บัตรเครดิตเพื่อการใช้จ่ายโดยใช้การวิเคราะห์อนุกรมเวลาด้วยเทคนิคเหมืองข้อมูล.