Using K-means Techniques for Clustering Depressed Patients in Mahasarakham Province

Main Article Content

Supakron Srisanga
Arisara Pahdungcharoen
Nanthicha Wonghong
Kanjana Hinthaw
Anupong Sukprasert
Warawut Narkbunnum

บทคัดย่อ

                This study used advanced data mining techniques to examine the patterns of depression and service use among patients in Mahasarakham Province. The focus was to understand how people with depression access and use medical services in this area. Data collected from the Mahasarakham Provincial Public Health Office were meticulously analyzed using the K-means clustering method. This analysis involved a dataset consisting of five key variables used in the clustering process. This study successfully identified six unique clusters of patients, each showing different symptoms and degrees of depression. These findings provide essential insights into the diverse manifestations of depression within Mahasarakham’s patient population, contributing valuable information for healthcare providers and policymakers to optimize service delivery and treatment approaches.

Article Details

บท
บทความวิจัย

References

Phomprasith, S., Karawekpanyawong, N., Pinyopornpanish, K., Jiraporncharoen, W., Maneeton, … Lawanaskol, S. (2022). Prevalence and Associated Factors of Depression in Medical Students in a Northern Thailand University: A Cross-Sectional Study. Healthcare, 10(3), 1-13.https://doi.org/10.3390/HEALTHCARE10030488

World Health Organization. (2023). Depressive disorder (depression). Retrieved October 25, 2023, from https://www.who.int/news-room/fact-sheets/detail/depression

Gupta, M. K., & Chandra, P. (2020). A comprehensive survey of data mining. International Journal of Information Technology (Singapore), 12(4), 1243–1257. https://doi.org/10.1007/S41870-020-00427-7/TABLES/7

Kolukuluri, M., Keerthana Devi, V., Tejaswini, S. S., & Anusha, K. (2023). Business Intelligence Using Data Mining Techniques And Predictive Analytics. Journal of Pharmaceutical Negative Results, 13, 6923–6932. https://doi.org/10.47750/PNR.2022.13.S07.837

Dogan, A., & Birant, D. (2021). Machine learning and data mining in manufacturing. Expert Systems With Applications, 166, 114060. https://doi.org/10.1016/J.ESWA.2020.114060

Laijawala, V., Aachaliya, A., Jatta, H., & Pinjarkar, V. (2020). Mental Health Prediction using Data Mining: A Systematic Review. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3561661

de la Fuente-Tomas, L., Arranz, B., Safont, G., Sierra, P., Sanchez-Autet, M., Garcia-Blanco, A., & Garcia-Portilla, M. P. (2019). Classification of patients with bipolar disorder using k-means clustering. PLOS ONE, 14(1), e0210314. https://doi.org/10.1371/JOURNAL.PONE.0210314

Weißer, T., Saßmannshausen, T., Ohrndorf, D., Burggräf, P., & Wagner, J. (2020). A clustering approach for topic filtering within systematic literature reviews. MethodsX, 7, 100831. https://doi.org/10.1016/J.MEX.2020.100831

Towards Data Science. (2018). K-means Clustering: Algorithm, Applications, Evaluation Methods, and Drawbacks. Retrieved October 25, 2023, from https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a

Ghazal, T. M., Hussain, M. Z., Said, R. A., Nadeem, A., Hasan, M. K., Ahmad, M., Khan, M. A., & Naseem, M. T. (2021). Performances of K-Means Clustering Algorithm with Different Distance Metrics. Intelligent Automation & Soft Computing, 30(2), 735–742. https://doi.org/10.32604/IASC.2021.019067

Ashabi, A., Bin Bin Sahibuddin, S., & Salkhordeh Salkhordeh Haghighi, M. (2020). The systematic review of K-means clustering algorithm. ACM International Conference Proceeding Series, 13–18. https://doi.org/10.1145/3447654.3447657

Baghdadi, N. A., Alsayed, S. K., Malki, G. A., Balaha, H. M., & Farghaly Abdelaliem, S. M. (2023). An Analysis of Burnout among Female Nurse Educators in Saudi Arabia Using K-Means Clustering. European Journal of Investigation in Health, Psychology & Education (EJIHPE), 13(1), 33–53. https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=161434209&site=ehost-live

Sheha, M. A., Mabrouk, M. S., & Sharawy, A. A. (2022). Feature Engineering: Toward Identification of Symptom Clusters of Mental Disorders. IEEE Access, 10, 134136–134156. https://doi.org/10.1109/ACCESS.2022.3232075

Zeng, Y., & Cheng, F. (2021). Medical and Health Data Classification Method Based on Machine Learning. Journal of Healthcare Engineering. https://doi.org/10.1155/2021/2722854

Martinez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez-Orallo, J., Kull, M., Lachiche, N., Ramirez-Quintana, M. J., & Flach, P. (2021). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data Engineering, 33(8), 3048–3061. https://doi.org/10.1109/TKDE.2019.2962680

Depression patients have access to services in Mahasarakham province. (n.d.). Department of Mental Health.

Levis, B., Sun, Y., He, C., Wu, Y., Krishnan, A., Bhandari, & Thombs, B. D. (2020). Accuracy of the PHQ-2 Alone and in Combination With the PHQ-9 for Screening to Detect Major Depression: Systematic Review and Meta- analysis. JAMA, 323(22), 2290–2300. https://doi.org/10.1001/JAMA.2020.6504

Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., & Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. Eurasip Journal on Wireless Communications and Networking, 2021(1), 1–16. https://doi.org/10.1186/S13638-021-01910-W/FIGURES/6