The Design and Experimentation for Robot Manipulator by Multi-Objective Optimization Algorithm
Main Article Content
Abstract
This research proposes an optimal path design for robot manipulator in picking up and holding things in the industry for a long time. Two objective functions are employed; 1) minimal jerk and 2) the minimum error oscillating of the object. The multi-objective optimization was used solving robot manipulator by comparing two algorithms: Multi-objective Whale optimization Algorithm (MOWOA), Multi-objective Grey Wolf Optimizer (MOGWO), Multi-objective Harmony Search Optimization (MOHS). The performance comparison was made based on the hypervolume (HV) indicator. MOWOA is superior to the other (HV : 192,877.48) and Experimentation in RS020N of Kawasaki Robot. It can reduce the jerk 32.33%.
Article Details
References
วโรดม ตู้จินดา. (2559). การวิเคราะห์และควบคุมหุ่นยนต์อุตสาหกรรม = Industrial Robot Analysis
and Control. พิมพ์ครั้งที่ 1. กรุงเทพฯ : สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย.
สุจินต์ บุรีรัตน์. (2556). การหาค่าเหมาะที่สุดของระบบทางวิศวกรรมเครื่องกล เล่ม 1.
ขอนแก่น : มหาวิทยาลัยขอนแก่น.
Kasem Nuaekaew, Pramin Artrit, Nantiwat Pholdee, Sujin Bureerat. (2017). Optimal reactive power
dispatch problem using a two-archive multi-objective grey wolf optimizer, Expert Systems
With Application, vol 87. pp. 79-89.
Kittisak Sanprasit. (2020). Multi-Objective Whale Optimization Algorithm of Humanoid Robot
Walking and Carry Objects on inclined planes. International Journal of Mechanical
Engineering and Robotics Research, 9(7), 1031-1042.
Kittisak Sanprasit. (2020). Multi-Objective Optimization Algorithm of Humanoid Robot Walking on a
Narrow Beam. International Journal of Mechanical Engineering and Robotics Research,
(12), 1548-1559.
Reza N.Jazar. (2010). Theory of Applied Robotics. 2nd ed. New York : Springer. Seyedai Mirjalili.