Using Oxygen Balance for Preliminary Thermal Hazard Risk Assessment of Explosive Substances

Authors

  • Kowit Piyamongkala Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Thailand
  • Suranee Anothairungrat Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Thailand

Keywords:

Explosive substance, Risk assessment, Oxygen balance

Abstract

The explosive substance containing the hydrocarbon occurs during thermal decomposition, it has broken into the stable small molecules. A preliminary risk assessment of the explosive substance can be done with the severity and probability of explosions which are evaluated from the oxygen balance and degree of explosive hazard, respectively. The 15 example types of explosive substance predicted from the equation which wrote very easy form the Microsoft Excel program. The oxygen balance showed the positive, negative and zero numbers whereas the degree of explosive hazard appeared in the letters of low, medium and high level.

References

สุคนธ์ทิพย์ เพ็งโฉม, โมไนย สุขแสงธรร, ศิริศาส เอื้อใจ และคณะ. การประเมินอันตรายทางความร้อนของไฮโดรเจนเปอร์ออกไซด์ความเข้มข้นต่ำโดยดิฟเฟอเรนเชียลสแกนนิงแคลอริมิเตอร์. วารสารวิศวกรรมศาสตร์ มหาวิทยาลัยสยาม. 2560; 18(1): 62-9.

Espindola-Calderon CA, Patel SJ, Alkhawaldeh A, et al. QSPR studies using genetic function approximation to predict the chemical reactivity of noncyclic hydrazines. Journal of Safety, Health & Environmental research. 2012; 8(2): 34-42.

Suna Q, Jianga J, Li M, et al. Assessment on thermal hazards of reactive chemicals in industry: State of the Art and perspectives. Prog. Energy Combust Sci. 2020; 78: 100832.

Bender HF, Eisenbarth P. Harardous chemicals: Control and regulation in the European market. Weinheim: Wiley-VCH Verlag GmbH&Co. KGaA; 2007.

Boelhouwer E, Davis J, Franco-Watkins A, et al. Comprehension of hazard communication: Effects of pictograms on safety data sheet and labels. J Saf Res. 2013; 46: 145-55.

Fondren NS, Fondren ZT, Unruh DK, et al. Study of physicochemical and explosive properties of a 2,4,6-trinitrotoluene/aniline cocrystal solvate. Cryst Growth & Des. 2020; 20(1): 116–29.

Pepekin VI, Korsunskii BL, Denisaev AA. Energy characteristics of initiation of explosion. Dokl Phys Chem. 2008; 420: 104-5.

Gustin JL. Thermal stability screening and reaction calorimetry: Application to runaway reaction hazard assessment and process safety management. J Loss Prev Process Ind 1993; 6(5): 275-91.

Clark DE. Peroxides and peroxide-forming compounds. Chem Health Safety. 2001; 8(5): 12-22.

Akhavan J. The chemistry of explosives. 3 rd ed. Cambridge: The Royal Society of Chemistry; 2011.

Urben PG, Pitt MJ. Bretherick's Handbook of Reactive Chemical Hazards, Vol. 2, 7th ed. Amsterdam: Elsevier; 2007.

Muthurajan H, Sivabalan R, Talawar MB, et al. Prediction of heat of formation and related parameters of high energy materials. J Hazard Mater. 2006; 133: 30–45

Lothrop WC, Handrick GR. The relationship between performance and constitution of pure organic explosive compounds. Chem Rev. 1949; 44: 419-445.

Shanley ES, Melhem GA. The oxygen balance criterion for thermal hazards assessment. Process Saf Prog. 1995; 14(1): 29-31.

Saraf SR, Rogers WJ, Mannan MS. Prediction of reactive hazards based on molecular structure. J Hazard Mater. 2003; 98: 15-29.

Mannan S. Lees’Process Safety Essentials: Hazard Identification, Assessment and Control. Amsterdam: Butterworth-Heinemann; 2014.

Oluwoye I, Dlugogorski BZ, Gore J, et al. Atmospheric emission of NOx from mining explosives. Atmos Environ. 2017; 167: 81-96.

Zawadzka-Małota I. Testing of mining explosives with regard to the content of carbon oxides and nitrogen oxides in their detonation products. J Sustain Min. 2015; 14: 173-8.

Billo EJ. Excel for Chemists: A Comprehensive Guide. 2nd ed. New York: Wiley-VCH; 2001.

Larsen RW. Engineering with Excel. 4th ed. Essex: Pearson; 2014.

He P, Zhang JG, Wang K, et al. Combination multinitrogen with good oxygen balance: Molecule and synthesis design of polynitro-substituted tetrazolotriazine-based energetic compounds. J Org Chem. 2015; 80(11): 5643-51.

International Labour Organization (ILO) [Internet]. ICSC database: International Chemical Safety Cards. c1996-2018 [cited 2021 April 19]. Available from: https://www.ilo.org/dyn/icsc/showcard.listcards3?p_lang=en

Downloads

Published

2021-06-25

How to Cite

[1]
K. Piyamongkala and S. . Anothairungrat, “Using Oxygen Balance for Preliminary Thermal Hazard Risk Assessment of Explosive Substances”, UTK RESEARCH JOURNAL, vol. 15, no. 1, pp. 83–93, Jun. 2021.

Issue

Section

Review Articles