การเตรียมโปรตีนไฮโดรไลเสตจากสาหร่ายสไปรูลิน่าและคุณสมบัติเชิงหน้าที่

ผู้แต่ง

  • สุพรรณี เบเชกู่ ภาควิชาจุลชีววิทยาและปรสิตวิทยา คณะวิทยาศาสตร์การแพทย์ มหาวิทยาลัยนเรศวร
  • วนิดา ปานอุทัย ฝ่ายจุลชีววิทยาประยุกต์ สถาบันค้นคว้าและพัฒนาผลิตภัณฑ์อาหาร มหาวิทยาลัยเกษตรศาสตร์

คำสำคัญ:

สไปรูลิน่า, โปรตีนไฮโดรไลเสต, เพปไทด์ที่ออกฤทธิ์ทางชีวภาพ, คุณสมบัติเชิงหน้าที่

บทคัดย่อ

โปรตีนจากสาหร่ายสไปรูลิน่าถือเป็นโปรตีนทางเลือกอุดมไปด้วยเพปไทด์ที่ออกฤทธิ์ทางชีวภาพก่อให้เกิดผลดีต่อสุขภาพของมนุษย์ เช่น การต้านอนุมูลอิสระ ต้านมะเร็ง ต้านการอักเสบ ลดความดันโลหิตหรือต้านโรคอ้วน เป็นต้น ดังนั้นโปรตีนไฮโดรไลเสตจากสาหร่ายสไปรูลิน่าจึงมีคุณสมบัติที่เหมาะสมสำหรับการประยุกต์ใช้ในผลิตภัณฑ์อาหารเพื่อสุขภาพ ซึ่งนอกจากคุณค่าทางโภชนาการที่เป็นประโยชน์ต่อผู้บริโภคแล้วยังมีคุณสมบัติเชิงหน้าที่ในอาหารที่เหมาะสมสำหรับการแปรรูปในแง่ของผู้ผลิต การรายงานในบทความก่อนหน้ามักรายงานถึงโปรตีนจากสาหร่ายสไปรูลิน่าและการประยุกต์ใช้ชีวมวล  สไปรูลิน่าในอาหารโดยไม่ผ่านการย่อย บทความนี้จึงได้รวบรวมข้อมูลที่สำคัญสำหรับการเตรียมโปรตีนไฮโดรไลเสตจากสาหร่ายสไปรูลิน่าโดยครอบคลุมเนื้อหาความสำคัญของโปรตีนไฮโดรไลเสต กระบวนการเพาะเลี้ยง การเก็บเกี่ยว และกระบวนการเตรียมโปรตีนไฮโดรไลเสต ตลอดจนกรณีศึกษาการประยุกต์ใช้โปรตีนไฮโดรไลเสตจากสาหร่ายสไปรูลิน่าในปัจจุบัน

References

Bortolini DG, Maciel GM, Fernandes IAA, Pedro AC, Rubio FTV, Branco IG, et al. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chem: Mol Sci 2022;5:100134.

Akbarbaglu Z, Ayaseh A, Ghanbarzadeh B, Sarabandi K. Techno-functional, biological and structural properties of Spirulina platensis peptides from different proteases. Algal Res 2022;66:102755.

Nasri M. Chapter Four - Protein hydrolysates and biopeptides: production, biological activities, and applications in foods and health benefits. A review. Adv Food Nutr Res. 2017;81:109-59.

Liceaga A, Hall F. Nutritional, Functional and Bioactive Protein Hydrolysates. Encyclo Food Chem. 2019:456-64.

Aiello G, Li Y, Boschin G, Bollati C, Arnoldi A, Lammi C. Chemical and biological characterization of spirulina protein hydrolysates: Focus on ACE and DPP-IV activities modulation. J Functi Foods 2019;63:103592.

McCarthy AL, Callaghan YC, Brien NM. Protein Hydrolysates from agricultural crops—bioactivity and potential for functional food development. Agriculture 2013;3(1):112-30.

Silva PCd, Toledo T, Brião V, Bertolin TE, Costa JAV. Development of extruded snacks enriched by bioactive peptides from microalga Spirulina sp. LEB 18. Food Biosci 2021;42:101031.

Soni RA, Sudhakar K, Rana RS. Spirulina – From growth to nutritional product: A review. Trends Food Sci 2017;69:157-71.

Venkataraman LV. Spirulina platensis (Arthrospira): physiology, cell biology and biotechnologym, edited by Avigad Vonshak. J Appl Phycol 1997;9(3):295-6.

Vo TS, Ngo DH, Kim SK. Chapter 19 - Nutritional and pharmaceutical properties of microalgal Spirulina. Handbook of Marine Microalgae. 2015:299-308.

AlFadhly NKZ, Alhelfi N, Altemimi AB, Verma DK, Cacciola F, Narayanankutty A. Trends and technological advancements in the possible food applications of Spirulina and their health benefits: A Review. Molecules 2022;27(17):5584.

Akbarbaglu Z, Ayaseh A, Ghanbarzadeh B, Sarabandi K. Biological stabilization of Arthrospira bioactive-peptides within biopolymers: Functional food formulation; bitterness-masking and nutritional aspects. LWT 2024;191:115653.

Matufi F, Choopani A. Spirulina, food of past, present and future. Health Biotechnol Biopharm 2020;3(4):1-20.

Li Y, Aiello G, Bollati C, Bartolomei M, Arnoldi A, Lammi C. Phycobiliproteins from Arthrospira platensis (Spirulina): A new source of peptides with dipeptidyl peptidase-IV inhibitory activity. Nutrients 2020;12(3):794.

Ovando CA, Carvalho JC, Pereira GVM, Jacques P, Soccol VT, Soccol CR. Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Food Rev Int 2018;34(1):34-51.

Adeyeye E, Ayeni S. Comparability of the amino acid composition of whole egg and two fancy meats (heart and liver) of domestic duck (Anas platyrhynchos) consumed in Nigeria. OJACR 2014;2(1):16-28.

Anaeto M, Adeyeye JA, Chioma G, Olarinmoye A, Tayo O. Goat Products: Meeting the challenges of human health and nutrition. Agric Biol J N Am 2010;1(6):1231-6.

Gorissen SHM, Crombag JJR, Senden JMG, Waterval WAH, Bierau J, Verdijk LB, et al. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018;50(12):1685-95.

Derbyshire E. Food-Based dietary guidelines and protein quality definitions-Time to move forward and encompass mycoprotein? Foods 2022;11(5):647.

Ward FM, Deyab MA. Comparative study of nutritional importance of some marine macroalgae as a novel natural source of amino acids. Russ J Mar Biol 2021;47:39-46.

Raczyk M, Polanowska K, Kruszewski B, Grygier A, Michałowska D. Effect of Spirulina (Arthrospira platensis) supplementation on physical and chemical properties of semolina (Triticum durum) based fresh pasta. Molecules 2022;27(2):355.

Tiong I, Yeong ys, Jusoh M, Wahid E, Nagappan T. Chlorella vulgaris : a perspective on its potential for combining high biomass with high value bioproducts. Appl Phycol 2020;1(1):2-11.

Chatterjee C, Gleddie S, Xiao CW. Soybean bioactive peptides and their functional properties. Nutrients 2018;10(9):1211.

Helal A, Tagliazucchi D. Peptidomics profile, bioactive peptides identification and biological activities of six different cheese varieties. Biology 2023;12(1):78.

Abdel-Hamid M, Otte J, De Gobba C, Osman A, Hamad E. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. Int Dairy J 2017;66:91-8.

Wang X, Chen H, Fu X, Li S, Wei J. A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. LWT 2017;75:93-9.

Anekthanakul K, Senachak J, Hongsthong A, Charoonratana T, Ruengjitchatchawalya M. Natural ACE inhibitory peptides discovery from Spirulina (Arthrospira platensis) strain C1. Peptides 2019;118:170107.

Yan QJ, Huang LH, Sun Q, Jiang ZQ, Wu X. Isolation, identification and synthesis of four novel antioxidant peptides from rice residue protein hydrolyzed by multiple proteases. Food Chem 2015;179:290-5.

Bougatef A, Nedjar-Arroume N, Manni L, Ravallec R, Barkia A, Guillochon D, et al. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chem 2010;118(3):559-65.

Wang L, Dong C, Li X, Han W, Su X. Anticancer potential of bioactive peptides from animal sources (Review). Oncol Rep 2017;38(2):637-51.

Wang Z, Zhang X. Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis. J Sci Food Agric 2017;97(3):918-22.

Vo TS, Ngo DH, Kang KH, Park SJ, Kim SK. The role of peptides derived from Spirulina maxima in downregulation of FcεRI-mediated allergic responses. Mol Nutr Food Res 2014;58(11):2226-34.

Usharani G, Saranraj P, Kanchana D. Spirulina Cultivation: A Review. IJPBA. 2012;3(6):1327-41.

Ismail I, Kurnia KA, Samsuri S, Bilad MR, Marbelia L, Ismail NM, et al. Energy efficient harvesting of Spirulina sp. from the growth medium using a tilted panel membrane filtration. Bioresour Technol Rep 2021;15:100697.

Stunda-Zujeva A, Veģere K. Growing and drying Spirulina/Arthrospira for producing food and nutraceuticals: A Review. KEM 2018;762:134-40.

Stramarkou M, Papadaki S, Kyriakopoulou K, Tzovenis I, Chronis M, Krokida M. Comparative analysis of different drying techniques based on the qualitative characteristics of Spirulina platensis biomass. J Aquat Food Prod 2021;30(5):498-516.

Ashaolu TJ. Applications of soy protein hydrolysates in the emerging functional foods: A Review. Int J Food Sci Technol 2019;55(2):421-8.

Pratama AI, Lioe HN, Yuliana ND, Ogawa M. Umami compounds present in umami fraction of acid-hydrolyzed Spirulina (Spirulina platensis). Algal Res 2022;66:102764.

Mohammadi M, Soltanzadeh M, Ebrahimi AR, Hamishehkar H. Spirulina platensis protein hydrolysates: Techno-functional, nutritional and antioxidant properties. Algal Res 2022;65:102739.

Sahin B, Hosoglu MI, Guneser O, Karagul-Yuceer Y. Fermented Spirulina products with Saccharomyces and non- Saccharomyces yeasts: Special reference to their microbial, physico-chemical and sensory characterizations. Food Biosci 2022;47:101691.

Ma J, Zeng X, Zhou M, Cheng L, Ren D. Inhibitory effect of low-molecular-weight peptides (0–3 kDa) from Spirulina platensis on H2O2-induced oxidative damage in L02 human liver cells. Bioresour Bioprocess 2021;8(1):36.

Jie Y, Yuanliang H, Mingxiong X, Yaohao D, Shenao L, Nan P, et al. Purification and identification of antioxidant peptides from enzymatic hydrolysate of Spirulina platensis. J Microbiol Biotechnol 2016;26(7):1216-23.

Zhang N, Li F, Zhang T, Li C-Y, Zhu L, Yan S. Isolation, identification, and molecular docking analysis of novel ACE inhibitory peptides from Spirulina platensis. Eur Food Res Technol 2022;248(4):1107-15.

Sun Y, Chang R, Li Q, Li B. Isolation and characterization of an antibacterial peptide from protein hydrolysates of Spirulina platensis. Eur Food Res Technol 2016;242(5):685-92.

MubarakAli D, MohamedSaalis J, Sathya R, Irfan N, Kim JW. An evidence of microalgal peptides to target spike protein of COVID-19: In silico approach. Microb Pathog 2021;160:105189.

Wang Z, Zhang X. Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth. Food Funct 2016;7(2):781-8.

Moghadamzadegan S, Emtyazjoo M, Sadeghi M, Rabbani M. Evaluation of anti-inflammatory effects of bioactive peptides of Spirulina platensis extracted by animal cysteine protease enzyme in mice Balb/C. J Anim Biol 2021;13(4):119-32.

Bingli Z, Cui Y, Xiaodan F, Qi P, Liu C, Zhou X, et al. Anti-obesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS One 2019;14(6):e0218543.

Lee C-W, Chang YB, Park CW, Han SH, Suh HJ, Ahn Y. Protein hydrolysate from Spirulina platensis prevents dexamethasone-induced muscle atrophy via Akt/Foxo3 signaling in C2C12 myotubes. Mar Drugs 2022;20(6):365.

Villaseñor VM, Enriquez-Vara JN, Urías-Silva JE, Mojica L. Edible Insects: Techno-functional properties food and feed applications and biological potential. Food Rev Int 2022;38(sup1):866-92.

Akbarbaglu Z, Ayaseh A, Ghanbarzadeh B, Sarabandi K, Kharazmi MS, Jafari SM. Chemical structure and bio-functional properties of Arthrospira platensis peptides produced by ultrasonication-enzymolysis: their emulsification capabilities. Process Biochem 2023;132:191-9.

Cristiane R, Pereira A, Costa JA. Biopeptides with antioxidant activity extracted from the biomass of Spirulina sp. LEB 18. Afr J Microbiol Res 2016;10(3):79-86.

Forutan M, Hasani M, Hasani S, Salehi N. Antioxidative activity and functional properties of enzymatic protein hydrolysate of Spirulina platensis. J Food Biosci Technol 2023;13(1):75-89.

Forutan M, Hasani M, Hasani S, Salehi N, Sabbagh F. Liposome system for encapsulation of Spirulina platensis protein hydrolysates: controlled-release in simulated gastrointestinal conditions, structural and functional Properties. Materials 2022;15(23):8581.

Maag P, Dirr S, Özmutlu Karslioglu Ö. Investigation of bioavailability and food-processing properties of Arthrospira platensis by enzymatic treatment and micro-encapsulation by spray drying. Foods 2022;11(13):1922.

Villaró-Cos S, Guzmán Sánchez JL, Acién G, Lafarga T. Research trends and current requirements and challenges in the industrial production of Spirulina as a food source. Trends Food Sci Technol 2024;143:104280.

Mohammadi M, Hamishehkar H, McClements DJ, Shahvalizadeh R, Barri A. Encapsulation of Spirulina protein hydrolysates in liposomes: Impact on antioxidant activity and gastrointestinal behavior. Food Chem 2023;400:133973.

Downloads

เผยแพร่แล้ว

2024-05-20