Optimization and characterization of synthesis of silver nanoparticles from Manihot esculenta Crantz L. petiole and leaf aqueous extracts and its antibacterial activity
คำสำคัญ:
Manihot esculenta Crantz L., Silver nanoparticles, Green synthesis, Hot water extractionบทคัดย่อ
The objective of this study was to investigate the structure and antibacterial activity of silver nanoparticles (AgNPs) synthesized from the petioles and leaves of Manihot esculenta Crantz L. using hot water extraction (PMH and LMH extract, respectively). Optimal synthesis of AgNPs was criticized from UV-vis absorption spectra. For AgNPs synthesized from PMH extract (AgPMH), the synthesis was carried out by addition of 2 mg/mL of the PMH extract pH 12.0 with 4 mM silver nitrate solution in a 2:8 (v/v) ratio at a temperature of 60 ๐C for 120 min. For AgNPs synthesized from LMH extract (AgLMH), the synthesis was carried by the addition 2 mg/mL of LMH extract pH 10.0 with 4 mM silver nitrate solution in 2:8 (v/v) ratio at temperature 80 ๐C for 120 min. The change of Fourier-transform infrared (FTIR) spectra indicated that the AgNPs of both extracts were synthesized. Transmission electron microscopy (TEM) analysis revealed that the synthesized nanoparticles were within 15.27 to 95.58 nm in size for AgPMH and 3.98 to 23.23 nm for AgLMH. X-ray diffraction (XRD) results showed that nanoparticle formed were crystalline with face centered cubic geometry. Both synthesized AgNPs did not show activity against Escherichia coli and Bacillus cereus.
References
Jalab J, Abdelwahed W, Kitaz A, Al-Kayali, R. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 2021;7(9):e08033.
Miranda A, Akpobolokemi T, Chung E, Ren G, Raimi-Abraham BT. pH alteration in plant mediated green synthesis and its resultant impact on antimicrobial properties of silver nanoparticles (AgNPs). Antibiotics (Basel) 2022;11(11):1592.
Silva LP, Reis IG, Bonatto CC. Green synthesis of metal nanoparticles by plants: current trends and challenges. In green processes for nanotechnology; Springer: New York, NY, USA; 2015:259–75.
Patra JK, Baek KH. Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014;2014(1):417305.
Cavassin ED, de Figueiredo LFP, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin ASS, Costa SF. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnol 2015;13:1–16.
Chen J, Li S, Luo J, Wang R, Ding W. Enhancement of the antibacterial activity of silver nanoparticles against phytopathogenic bacterium Ralstonia solanacearum by stabilization. J Nanomate 2016;2016(1):7135852.
Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 2014;4:3974–83.
Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, Sharghi H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A Preliminary Study. J Nanomater 2015;2015:720654.
Marchiol L, Mattiello A, Poš´ci´c F, Giordano C, Musetti R. In Vivo synthesis of nanomaterials in plants-location of silver nanoparticles and plant metabolism. Nanoscale Res Lett 2014;9:101.
Ajitha B, Ashok Kumar Reddy Y, Sreedhara Reddy P. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 2014;128:257-62.
Mohanta YK, Panda SK, Bastia AK, Mohanta TK. Biosynthesis of silver nanoparticles from Protium serratum and investigation of their potential impacts on food safety and control. Front Microbiol 2017;8:626.
Chauhan N, Tyagi AK, Kumar P, Malik A. Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Front Microbiol 2016;7:1748.
Essien ER, Atasie VN, Okeafor AO, Nwude DO. Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. Int Nano Lett 2020;10(1):43-48.
Appiah H, Falah S. Dewi, LK. Effect of boiled cassava leaves (Manihot esculenta Crantz) on total phenolic, flavonoid and its antioxidant activity. Curr Biochem 2016;3(3):116-27.
Mustarichie R, Sulistyaningsih S, Runadi D. Antibacterial activity test of extracts and fractions of cassava leaves (Manihot esculenta Crantz) against clinical of isolates Staphylococcus epidermidis and Propionibacterium acnes causing acne. Int J Microbiol 2020;1975904.
Quartey E, Amoatey H, Achoribo E, Owusu-Ansah M, Nunekpeku W, Donkor S, Ofori ESKE. Phytochemical constituents and antioxidant activities in leaves of 14 breeding lines of cassava (Manihot esculenta Crantz). Am J Exp Agric 2016;12(5):1-10.
Tesfaye M, Gonfa Y, Tadesse G, Temesgen T, Periyasamy S. Green synthesis of silver nanoparticles using Vernonia amygdalina plant extract and its antimicrobial activities. Heliyon, 2023;9(6):e17356.
Velayutham K, Ramanibai R, Umadevi M. Green synthesis of silver nanoparticles using Manihot esculenta leaves against Aedes aegypti and Culex quinquefasciatus. J Basic Appl Zool 2016;74:37-40.
Velu M, Lee JH, Chang WS, Lovanh N, Park YJ, Jayanthi P, Palanivel V, Oh BT. Fabrication, optimization, and characterization of noble silver nanoparticles from sugarcane leaf (Saccharum officinarum) extract for antifungal application. 3 Biotech 2017;7(2):147.
Ni Q, Zhu T, Wang W, Guo D, Li Y, Chen T, Zhang, X. Green synthesis of narrow-size silver nanoparticles using Ginkgo biloba leaves: condition optimization, characterization, and antibacterial and cytotoxic activities. Int J Mol Sci 2024;25(3):1913.
Maria BS, Devadiga A, Kodialbail VS, Saidutta MB. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract. Appl Nanosci 2015;5:755–62.
Liaqat N, Jahan N, Khalil-Ur-Rahman, Anwar T, Qureshi H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front Chem 2022;10:952006.
Anandalakshmi K, Venugobal J, Ramasamy VJAN. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci 2016;6:399-408.
Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract-A comprehensive study. Mater Sci Eng C Mater Biol Appl 2016;58:359-65.
Bajad PN, Pardeshi AB, Pagore VP. Extraction, isolation and quantification of saponin from Dodonaea viscosa JACQ. Pharma Innovation 2019;8(5):41-4.
Wisetkomolmat J, Suksathan R, Puangpradab R, Kunasakdakul K, Jantanasakulwong K, Rachtanapun P, Sommano SR. Natural surfactant saponin from tissue of Litsea glutinosa and its alternative sustainable production. Plants 2020;9(11):1521.
Hong T, Yin JY, Nie SP, Xie MY. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem X 2021;12:100168.
Syafiuddin A, Salmiati, Hadibarata T, Salim MR, Kueh ABH, Sari AA. A purely green synthesis of silver nanoparticles using Carica papaya, Manihot esculenta, and Morinda citrifolia: synthesis and antibacterial evaluations. Bioprocess Biosyst Eng 2017;40(9):1349-1361.
Miranda A, Akpobolokemi T, Chung E, Ren G, Raimi-Abraham, BT. pH alteration in plant-mediated green synthesis and its resultant impact on antimicrobial properties of silver nanoparticles (AgNPs). Antibiotics (Basel) 2022;11(11):1592.
Nahar K, Rahaman MH, Khan GM, Islam M, Al-Reza, S. Green synthesis of silver nanoparticles from Citrus sinensis peel extract and its antibacterial potential. Asian J Green Chem. 2020;5:135–150.
Bamsaoud SF, Basuliman MM, Bin-Hameed EA, Balakhm SM, Alkalali AS. The effect of volume and concentration of AgNO3 aqueous solutions on silver nanoparticles synthesized using Ziziphus Spina–Christi leaf extract and their antibacterial activity. Phys Conf Ser 2021;1900:012005
Mankad M. Patil G, Patel D, Patel P, Patel A. Comparative studies of sunlight mediated green synthesis of silver nanoparaticles from Azadirachta indica leaf extract and its antibacterial effect on Xanthomonas oryzae pv. oryzae, Arab J Chem 2020;13(1):2865-2872.
Khalil MM, Ismail EH, El-Baghdady KZ, Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arub J Chem 2014;7(6):1131-9.
Htwe YZN, Chow WS, Suda Y, Mariatti M. Effect of silver nitrate concentration on the production of silver nanoparticles by green method. Mater Today: Pro 2019;17(3):568-73.
Rathinavel S, Saravanakumar SS. Synthesis of silver nanoparticles through orange peel powder for antibacterial composite filler applications. J Polym Environ 2022;1-8.
Mamdooh NW, Naeem GA. The effect of temperature on green synthesis of silver nanoparticles. AIP Conf Proc 2022;2450.
Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA. Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomedicine 2011;677-81.
Raja PB, Rahim AA, Qureshi AK, Awang K. Green synthesis of silver nanoparticles using tannins. Mater Sci-Pol 2014 Sep;32:408-13.
Cruz ALD, Buendia NJL, Condes RBJ. Antibacterial activity of cassava Manihot esculenta leaves extract against Escherichia coli. Am J Environ Sci 2022;1(2):23-30.
Downloads
เผยแพร่แล้ว
How to Cite
ฉบับ
บท
License
Copyright (c) 2025 วารสารวิทยาศาสตร์และเทคโนโลยี หัวเฉียวเฉลิมพระเกียรติ

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความทุกบทความที่ได้รับการตีพิมพ์ถือเป็นลิขสิทธิ์ของ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยหัวเฉียวเฉลิมพระเกียรติ