Embedded system for automatic door control with recognizing faces

ระบบสมองกลฝังตัวสำหรับการควบคุมประตูอัตโนมัติด้วยใบหน้า

Authors

  • Tanaporn Payommai Rajamangala University of Technology Isan
  • วิญญู ศิลาบุตร
  • ไมตรี ธรรมมา
  • วิชชุพงษ์ วิบูลเจริญ
  • สมสิน วางขุนทด

Keywords:

Recognizing faces, Facial analysis, Image processing

Abstract

Nowadays, the technology in image processing has developed a lot by bringing images to process or calculate with computers to get the required information both qualitatively. And quantitative, such as fingerprint scanning Iris scan Facial analysis, etc. Therefore, the face preparation to study the function of the face detection system and face analysis applied in conjunction with a security system to open the door to the place This article is the design and construction of an embedded system for automatic door control by face detection. Raspberry Pi is an intermediary in the control and processing of face detection and face analysis. Use a webcam to detect images for processing. And sent to the relay for the solenoid latch to unlock the door and has a LCD display to display the information of the face and the time in the face analysis, which uses Python to program to control the operation of the system. From the system experiment, The system can detect water to analyze faces in areas with visible brightness. Which is in the range less than 100-1000 lux has an accuracy of Face analysis is 80-100 percent, the angle of the face used to detect the face. The most accurate face analyzes were faces, angles, and number of human face data in the database from 1-30. It takes about 5 seconds

Downloads

Published

2021-06-27

How to Cite

Payommai, T., ศิลาบุตร ว. ., ธรรมมา ไ. ., วิบูลเจริญ ว., & วางขุนทด ส. . (2021). Embedded system for automatic door control with recognizing faces: ระบบสมองกลฝังตัวสำหรับการควบคุมประตูอัตโนมัติด้วยใบหน้า. Huachiew Chalermprakiet Science and Technology Journal, 7(1), 63–72. retrieved from https://ph02.tci-thaijo.org/index.php/scihcu/article/view/244249

Issue

Section

Research Articles