Histological study of coronary artery in Thai cadavers

Authors

  • Rapipan Siridet Division of Biological Science, Faculty of Science and Technology, Huachiew Chalermprakiet University
  • Pasinee Sanguansit Division of Biological Science, Faculty of Science and Technology, Huachiew Chalermprakiet University

Keywords:

Coronary artery, Histology, Cadaver, Arterial wall, Tunica intima

Abstract

Cardiovascular disease is the leading cause of death for people worldwide and found that the incidence of atherosclerosis in the coronary arteries is sharply increasing in the elderly. The objectives of this research were to study the histology and arterial wall thickness of the left and right coronary artery of 20 Thai cadavers aged 52–101 years with Hematoxylin and eosin staining and Verhoeff-Van Gieson. The thickness of the tunica intima of the right coronary artery was significantly thicker than the tunica media (p < 0.05), and large accumulations of foam cells were found in the wall of left and right coronary arteries. Other plaques included the lipid core, fibrous cap, calcifications, and cholesterol cleft, and abnormalities of the internal and external elastic lamina were observed, there were straight, reduplication, stretch, and fraying. It was shown that people aged over 50 will have histological changes to the arterial wall. This may lead to the development of atherosclerosis. The results of this research will be the basis of information that can be applied in risk assessment and surveillance of coronary artery disease.

References

Yoshizumi M, Abe J, Tsuchiya K, Berk BC, Tamaki T. Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases. J Pharmacol Sci 2003;91(3):172-6.

Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol 2014;34(3):509-15.

Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006;47(8):7-12.

Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell 2001;104(4):503-16.

Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352(16):1685-95.

ศันสนีย์ วงศ์ไวศยวรรณ. ตำราพยาธิวิทยากายวิภาค เล่ม 1. พิมพ์ครั้งที่ 2. กรุงเทพฯ: โรงพิมพ์เดือนตุลา; 2555.

Bhandari BJ, Jadhav MN, Shetty AK, Kittur SK. Morphological analysis of coronary atherosclerosis by modified American heart association classification in young individuals an autopsy study. J Pathol 2018;8(2):67-72.

Deopujari R, Dixit A. The Study of Age related changes in coronary arteries and its relevance to the atherosclerosis. J Anat Soc India 2010;59(2):192-6.

Wu J, Xia S, Kalionis B, Wan W, Sun T. The role of oxidative stress and inflammation in cardiovascular aging. Biomed Res Int 2014;2014:1-13.

Milutinović A, Šuput D, Zorc-Pleskovič R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosn. J Basic Med Sci 2020;20(1):21-30.

รุ่งรัตน์ นิลธเสน. ไนตริกออกไซด์กับโรคหลอดเลือดตีบแข็ง Nitric oxide and atherosclerosis. ว. วิทย. เทคโน. หัวเฉียวเฉลิมพระเกียรติ 2559;2(1):71-9.

Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res 2016;118(4):692-702.

BhanVadia VM, Desai NJ, Agarwal NM. Study of coronary atherosclerosis by modified american heart association classification of atherosclerosis-an autopsy study. J Clin Diagn Res 2013;7(11):2494-7.

Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011;473:317–25.

Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG, Riksen NP. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol 2014;34(8):1731–8.

Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014;114(12):1852-66.

Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20(5):1262–75.

Dalager S, Paaske WP, Kristensen IB, Laurberg JM, Falk E. Artery-related differences in atherosclerosis expression: implications for atherogenesis and dynamics in intima-media thickness. Stroke 2007;38(10):2698-705.

Clarke MC, Bennett MR. Cause or consequence: what does macrophage apoptosis do in atherosclerosis?. Arterioscler Thromb Vasc Biol 2009;29(2):153–5.

Mori H, Torii S, Kutyna M, Sakamoto A, Finn AV, Virmani R. Coronary artery calcification and its progression: What does it really mean?. JACC Cardiovasc Imaging 2018;11(1):127-42.

Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation 2008;117(22):2938-48.

Liu W, Zhang Y, Yu CM, Ji QW, Cai M, Zhao YX, et al. Current understanding of coronary artery calcification. J Geriatr Cardiol 2015;12(6):668-75.

Pranjali R, Sachin S. Histology of coronary arteries in relation to the coronary sclerosis. J Anat 2018;2(2):1-6.

Venkateshwer M, Pusala B. Anatomical variations in branching pattern and dimensions of coronary arteries: a cadaveric study from south India. J Dent Med Sci 2016;15(8):21-8.

Bocan TMA, Schifani TA, Guyton JR. Ultrastructure of the human aortic fibrolipid lesion. Formation of the atherosclerotic lipid-rich core. Am J Pathol 1986;123(3):413-24.

Shembekar S, Meshram M. Age Related Histological Changes in Tunica Intima of Coronary Arteries in Relevance to the Atherosclerosis. Indian J Forensic Med Toxicol 2016;10(2):168-71.

Downloads

Published

2022-12-07

How to Cite

Siridet, R., & Sanguansit, P. . (2022). Histological study of coronary artery in Thai cadavers. Huachiew Chalermprakiet Science and Technology Journal, 8(2), 45–55. retrieved from https://ph02.tci-thaijo.org/index.php/scihcu/article/view/246718

Issue

Section

Research Articles