Solution of the exponential Diophantine Equation
Keywords:
Diophantine equations, integer solutions, number theoryAbstract
This study investigates the exponential Diophantine equation where p is a prime number and n, x, y, z are non-negative integers, subject to the modular condition
The primary objective is to determine all non-negative integer solutions of this equation by employing quadratic residue theory, modular arithmetic, and its connections to Pell-type equations.
The results demonstrate that the equation admits a unique non-negative integer solution given by
For all other values of p, no non-negative integer solutions exist, and it can be rigorously proven that cannot be a perfect square outside this solution. These findings provide a clear classification of the solution set structure and offer theoretical insights beneficial for further studies on exponential Diophantine equations, including potential applications in computational number theory and cryptographic systems.
References
Burshtein N. On the Diophantine equation p^x+(p+5)^y=z^2. Ann Pure Appl Math 2020;9(1):41-4.
Catalan E. Note extradite dune letter adressee a l’editeur. J Reine Angew Math 1844;27:192.
Chotchaistith S. On the Diophantine equation 4^x+p^y=z^2 where p is a prime number. Am J Math Sci. 2012;1:191–3.
Burton DM. Elementary Number Theory. 6th ed. Singapore: McGraw-Hill; 2007.
Fernando N. On the solvability of the Diophantine equation p^x+(p+8)^y=z^2. when p>3 and p+8 are primes. Ann Pure Appl Math 2018;18(1):9–13.
Kumar S, Gupta S, Kishan H. On the non-linear Diophantine equation p^x+(p+6)^y=z^2. Ann Pure Appl Math 2018;8(1):125–8.
Mihăilescu P. Primary cycolotomic units and a proof of Catalan’s conjecture. J Reine Angew Math. 2004;27:167–95.
Pakapongpun T, Chattae C. On the Diophantine equation p^x+7^y=z^2 where p is prime and x,y,z are non-negative integers. Int J Math Comput Sci 2022;17(4):1535–40.
Sroysang B. The Diophantine equation 3^x+5^y=z^2. Int J Pure Appl Math 2012;81(4):605–8.
Sroysang B. On the Diophantine equation〖7〗^x+31^y=z^2. Int J Pure Appl Math 2014;92(1):109–12.
Suvarnamani A. Solutions of the Diophantine equation〖 2〗^x+q^y=z^2. Int J Pure Appl Math 2011;1(3):1415–9.
Viriyapong N, Viriyapong C. On a Diophantine equation n^x+13^y=z^2 where n≡2(mod 39) and n+1 is not a square number. J Appl Math 2021;29(1):33–41.
Tanjai W, Chubthaisong C. On the Diophantine equation 3^x+p^y=z^2 where p≡2 (mod 3). WSEAS Trans Math 2020:245–56.
Tadee S, Siraworakun A. Non-existence of positive integer solutions of the Diophantine equation p^x+(p+2q)^y=z^2 where p,q and p+2q are prime numbers. Eur J Pure Appl Math 2023;16(2):724–35.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Huachiew Chalermprakiet Science and Technology Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความทุกบทความที่ได้รับการตีพิมพ์ถือเป็นลิขสิทธิ์ของ คณะวิทยาศาสตร์แฟละเทคโนโลยี มหาวิทยาลัยหัวเฉียวเฉลิมพระเกียรติ