Blood Typing Platform using a Local Binary Pattern from Blood Sedimentation in a Microplate
Main Article Content
Abstract
Blood donation plays a vital role in saving human life and also indicates a essential quality of local health system. In the practical of blood donation, blood grouping for ABO and Rh systems is required according to the international standards of the blood bank in hospitals. Which, relying on a technician to identify the results that interpret by the coagulation pattern of blood was mixed with the antibodies against the blood type. This research proposes a platform for grouping blood types by a specific binary model. The different coagulation patterns for each blood group were performed using the Local Binary Pattern (LBP) method consisting of eight coagulation characteristics of blood groups. The platform can recognize blood types in the ABO system and the Rh system at the same time. Data collection is performed with coagulation and non-sediment imaging of blood samples with antibodiesrecognized to the ABO system and the Rh system blood group. The data analysis on this platform is developed in a Python programming language and processed on a Raspberry Pi. In results, it can be noted that the analysis of blood groups to be accurate, fast and able to analyze multiple samples at the same time. In addition, the data collection would be generated and recorded onto the website of the blood donor information and also can be connected to the hospital database in the future. In the results, a system demonstration using photographs of blood donor testing of 120 donors who the donor blood has been mixed with antibodies. It was found that the proposed system was able to correctly identify all donor blood groups and takes an average of 2.4 people per second processing time.
Article Details
References
อุสา สุทธิสาคร, สิทธิพงศ์ วัฒนานนท์สกุล, ดำรง เชี่ยวศิลป์. “การศึกษาพฤติกรรมการบริจาคโลหิตของผู้ที่มาบริจาคโลหิต ณ ศูนย์บริการโลหิตแห่งชาติ สภากาชาดไทย”. วารสารโลหิตวิทยาและเวชศาสตร์บริการโลหิต., ปีที่ 24 (ฉบับที่ 3), หน้า 251-260, 2557.
IH-500 Fully Automated Blood Testing System. (7 April 2021). [Online] Available : https://info.bio-rad.com/cdg-ih500.html
Daniels G, Bromilow I, An introduction to blood groups : Essential Guide to Blood Groups. Oxford: Blackwell Publishing Ltd, 2007:4.
G. Daniels, L. Castilho, W. A. Flegel, et al., International Society of Blood Transfusion Committee on Terminology for Red Cell Surface Antigens: Macao Report. Vox Sang, 2009.
มาลีรัตน์ โสดานิล และอมรศักดิ์ อมรธนานันท์. “การรู้จำใบหน้าแบบหลายมุมมองโดยใช้เทคนิคการผสมผสานการแบ่งภาพและการจับภาพคู่มุมมองจริง”. วารสารเทคโนโลยีสารสนเทศ มจพ., ปีที่ 8 (ฉบับที่ 2), หน้า 33 – 38, 2555.
D. Huan, C. Shan, M. Ardebilian, et al.,“Local binary patterns and its application to facial image analysis: a survey,” IEEE Trans. on system, man and cybernetics, Vol. 41(6), pp. 765 – 781, 2011.
A. Ferraza V.Carvalho and J. Machado, “Determination of human blood type using image processing techniques,” Measurement., Vol. 97, pp. 165-173, 2017.
A. Yamin, F. Imran, U. Akbar, S. H. Tanvir., “Image processing based detection & classification of blood group using color images,” International Conference on Communication, Computing and Digital Systems (C-CODE), 2017.
A. Anand, V. Jha, L. Sharma, “An improved local binary patterns histograms technique for face recognition for real time applications,” International Journal of Recent Technology and Engineering. Vol. 8(257), pp. 524-529, 2019.
G. Heusch, Y. Rodriguez, S. Marcel, “Local binary patterns as an image preprocessing for face authentication,” Proceeding of the 7th International Conference on Automatic Face and Gesture Recognition (FGR’06), 2006.