On the solutions of the Diophantine equation p^x+(p+3n)^y=z^2

Authors

  • Sirichan Vesarachasart Thammasart University
  • katunyu Boonchumjai Suankularbwittayalai Rangsit School, Faculty of Science and Technology, Thammasat University

Keywords:

Diophantine equation, Solution, Non-negative integer, Prime numbers

Abstract

This paper, we studied the Diophantine equation gif.latex?p^x+(p+3n)^y=z^2 where gif.latex?x,y,z,n are non-negative integers, gif.latex?p,p+3n are prime numbers. We found that this equation has no solutions when gif.latex?p\equiv1(mod3), if gif.latex?p\equiv0(mod3), this equation has a solution only if gif.latex?p=3. In case gif.latex?p\equiv2(mod3) and gif.latex?x+y\leq&space;3, the solutions of this equation are

gif.latex?\left&space;(&space;x,y,z,p,n&space;\right&space;)=\left&space;(&space;0,3,3,2,0&space;\right&space;),\left&space;(&space;3,0,3,2,n&space;\right&space;),\left&space;(&space;1,1,\sqrt{2p+3n},p,n&space;\right&space;),\left&space;(&space;2,2,\sqrt{p^2+p+3n},p,n&space;\right&space;)

for some non-negative integers gif.latex?n, gif.latex?p,p+3n are prime numbers and gif.latex?\sqrt{2p+3n},\sqrt{p^2+p+3n} are positive integers.

Additionally, we find the non-negative integer solutions of the Diophantine equation gif.latex?3^x+3^y=z^2, that is gif.latex?\left&space;(&space;x,y,z&space;\right&space;)=\left&space;(&space;2k,2k+1,2\cdot3^k&space;\right&space;) where gif.latex?k is a non-negative integer.

References

Acu, D. On a Diophantine equation 2^x+5^y=z^2. General Mathematics. 2007; 15(4): 145-148.

Chotchaisthit, S. On the Diophantine equation 2^x+11^y=z^2 . Maejo International Journal of Science and Technolog. 2013; 7(2): 291-293.

Sroysang, B. On the Diophantine Equation 7^x+31^y=z^2 . International Journal of Pure and Applied Mathematics. 2014; 92(1): 109-112.

Sugandha, A., Tripena A. and Prabowo, A. Solution to Non-Linear Exponential Diophantine Equation 13^x+31^y=z^2. IOP Conf. Series: Journal of Physics: Conf. Series. 1179:012002. 2019 [cited 2024 Jan 20]. Available from:

https://iopscience.iop.org/article/10.1088/1742-6596/1179/1/012002

Paisal, K. and Chayapham, P. On the exponential Diophantine equation 17^x+83^y=z^2 and 29^x+71^y=z^2. Journal of Physics: Conference Series 2070 012015. 2021. [cited 2024 Jan 20] Available from:

https://iopscience.iop.org/article/10.1088/1742-6596/2070/1/012015/pdf

Vesarachasart, S., Eiemrawd, C., Thiengtham, S. and Moungkun, A. On the Diophantine Equation p^x+(p+12)^y=z^2 where p and p+12 are prime numbers. Thai Journal of Science and Technology. 2023; 12(1): 514-521.

Mihailescu, P. Primary cyclotomic units and a proof of Catalan''s conjecture. Journal für die reine und angewandte Mathematik. 2004; 27: 167-195.

Downloads

Published

2024-12-29

How to Cite

[1]
S. Vesarachasart and katunyu Boonchumjai, “On the solutions of the Diophantine equation p^x+(p+3n)^y=z^2”, UTK RESEARCH JOURNAL, vol. 18, no. 2, pp. 56–63, Dec. 2024.

Issue

Section

Research Articles