Bioactive activities of peptides extracted from Khao Dowk Mali 105 defatted rice bran
Keywords:
Rice bran, Peptide hydrolysate, Antioxidant activity, Anti-inflammatory activityAbstract
The aim of this research was to study the antioxidant and anti-inflammatory activities of peptide hydrolyzate from defatted Khao Dawk Mali 105 rice bran (DFRB), which is agricultural waste from the rice bran oil industry. Peptide hydrolysate from DFRB was obtained by enzymatic hydrolysis by Alcalase (0.875%). Amino acid profile, ability of antioxidant and anti-inflammatory activity of peptide hydrolysate were evaluated. The DFRB peptide hydrolysate (DFRBH) consisted of 27.66% of amino acids in the form of short polypeptides. It had ability to scavenge DPPH radical (IC50 = 1.15 mg/mL) and reduce ferric ion (FRAP) (157.12 µmol Fe2+/g). The anti-inflammatory by inhibition the production of pro-inflammatory mediators, tumor necrosis factor- (TNF-
), interleukin-6 (IL-6), interleukin-1
(IL-1
) and nitric oxide (NO) of of DFRBH aqueous solution at 5% concentration were 49.07%, 34.66%, 44.98% and 41.13% of lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. These results suggested that DFRBH could potentially be used as ingredient for functional food and therapeutic agent against oxidant and inflammatory diseases.
References
Biswas S, Das R, Banerjee ER. Role of free radicals in human inflammatory diseases: review. AIMS Biophys 2017;4(4):596-614.
Saisavoey T, Sangtanoo P, Reamtong O, Karnchanatat A. Antioxidant and anti-inflammatory effects of defatted rice bran (Oryza sativa L.) protein hydrolysates on RAW 264.7 macrophage cells. J Food Biochem 2016;40(6):731-40.
Heo SY, Ko SC, Jung WK. The pepsinolytic hydrolysate from Johnius belengerii frame inhibited LPS-stimulated production of pro-inflammatory mediators via the inactivating of JNK and NF-kB pathways in RAW 264.7 macrophages. Fish Aquatic Sci 2018;21(14):1-8.
Amagliani L, O'Regan J, Kelly AL, O'Mahony JA. The composition, extraction, functionality and applications of rice proteins: A review. Trends Food Sci Technol 2017;64:1–12.
Chaijaroen T. Functional and biological properties of enzymatic hydrolysate from defatted rice bran by using partial purified Nile Tilapia (Oreochromis niloticus) Viscera extract. Ph.D. Thesis, Prince of Songkla University. Songkla; 2015.
Phantuwong N, Thongraung C, Yupanqui CT. Enzymatic hydrolysis on protein and -glucan content of Sang-yod rice bran hydrolysates and their anti-inflammatory activity on RAW 264.7 cells. Funct Foods Health Dis 2017;7(12):958-71.
Chanput W, Lawyer R. The potential of fractionated rice bran protein hydrolysates as antioxidative and anti-inflammatory agents. J Nutr Sci Vitaminol 2020;66:349–55.
Chen G, Zhao L, Zhao L, Cong T, Bao S. In Vitro Study on Antioxidant activities of peanut protein hydrolysate. J Sci Food Agric 2007;87:357–62.
Thamnarathip P, Jangchud K, Nitisinprasert S, Vardhanabhuti B. Identification of peptide molecular weight from rice bran protein hydrolysate with high antioxidant activity. J Cereal Sci 2016;69:329-35.
พัสตราภรณ์ ทองอิ่มพงษ์, ณัฎฐา เลาหกุลจิตต์, อรพิน เกิดชูชื่น, สุรพงษ์ พินิจกลาง, เบญจวรรณ ธรรมธนารักษ์. สมบัติต้านอนุมูลอิสระและสมบัติเชิงหน้าที่ของโปรตีนจากกากทานตะวันที่ไฮโดรไลซ์ด้วยเอนไซม์โบรมิเลนและ Flavourzyme®. วารสารวิจัยและพัฒนา มจธ. 2559;39(4):565–83.
Sonklin C, Laohakunjit N, Kerdchoechuen O. Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates. PeerJ 2018;6(e5337):1–20.
Chen HJ, Dai FJ, Chen CY, Fan SL, Zheng JH, Huang YC, et al. Evaluating the antioxidants, whitening and antiaging properties of rice protein hydrolysates. Molecules 2021;26(12):3605.
Hernandez-Ledesma B, Miralles B, Amigo L, Ramos M, Recio I. Identification of antioxidant and ACE-inhibitory peptides in fermented milk. J Sci Food Agric 2005;85(6):1041–8.
Mendis E, Rajapakse N, Kim SK. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agric Food Chem 2005;53(3):581–7.
Inkanuwat A, Sukaboon R, Reamtong O, Asawanonda P, Pattaratanakun A, Saisavoey T, Sangtanoo P, Karnchanatat A. Nitric oxide synthesis inhibition and anti-inflammatory effect of polypeptide isolated from chicken feather meal in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Technol Biotechnol 2019;57(2):200-12.
Jangmesin K, Rimkeeree H, Tadakittisarn S. Enzymatic optimization of riceberry bran protein hydrolysate extraction and characterization. Curr Appl Sci Technol 2017;17(2):200–23.
Lim EWT, Leach ST, Lemberg DA, Day AS. A Brief overview of nutrient anti-inflammatory molecules and their in vitro and in vivo activity. J Nutri Med Diet Care 2016;2(2):1-7.
He F, Wu C, Li P, Li N, Zhang D, Zhu Q, Ren W, Peng Y. Functions and signaling pathways of amino acids in intestinal inflammation. BioMed Res Int 2018;9171905:1-13.
Montserrat-de la Paz S, Villanueva A, Pedroche J, Millan F, Martin ME, Millan-Linares MC. Antioxidant and anti-Inflammatory properties of bioavailable protein hydrolysates from lupin-derived agri-waste. Biomolecules 2021;11(10):1458.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Huachiew Chalermprakiet Science and Technology Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความทุกบทความที่ได้รับการตีพิมพ์ถือเป็นลิขสิทธิ์ของ คณะวิทยาศาสตร์แฟละเทคโนโลยี มหาวิทยาลัยหัวเฉียวเฉลิมพระเกียรติ