Designs and fabrication reciprocating wear testing machine

Authors

  • ณภัทร อินทนนท์ Faculty of Technical Education, Rajamangala University of Technology Isan Khon Kaen campus
  • นราธิป ภาวะรี Faculty of Technology, Udon Thani Rajabhat University
  • สุภลักษณ์ ศรีน้อย Faculty of engineering, North Eastern University

Keywords:

Wear testing machine, Wear rate, Reciprocating method, ASTM G133

Abstract

This research aims to design and fabricate a manual reciprocating wear testing machine which is easy to use, durable, long-time continuous testing, reliability and the error of testing result must not exceed than 10%. The result showed that the size of the machine was 40 x 40 cm. and a load of a machine was 30 kg. maximum speed was 600 rpm and maximum load was 15 N. The testing result of the machine (refer to ASTM G133) showed that the machine has reliability at 95 % confidence and testing result error was less than 10 % of theoretically.

References

[1] ภาวะอุตสาหกรรมเครื่องจักรกล. ศูนย์วิเคราะห์ข้อมูลเชิงลึกอุตสาหกรรมเครื่องจักรกล[อินเตอร์เน็ต]. 2562. [เข้าถึงเมื่อ 20 มิถุนายน 2562]. จาก: miu.isit.or.th

[2] Rabinowicz E. Investing in knowledge: Friction, Wear and Lubrication [อินเตอร์เน็ต]. [เข้าถึงเมื่อ 20 พ.ย. 2561]. จาก: www.machine design.com/

[3] Hatchett C. Experiments and observations on the various alloys, on the specific gravity, and on the comparative wear of gold. Phil Trans Roy Soc Lond. 1893; (93):43-194.

[4] Rennie G. Experiment on the friction and Abrasive wear of solids. Phil Trans Roy Soc Lond. 1829;(119).

[5] Zmitrowicz A. Wear patterns and laws of wear. Theor Appl Mech. 2006; (44):219-253.

[6] Archard JF. Contact and rubbing of flat surface. J Appl Phys. 1953; (24):981–88.

[7] Hirst W. Lancester JK. The influence of oxide and lubricant films on the friction and surface damage of metals. Phil Trans Roy Soc Lond Math Phys Sci. 1960; (259): 228–41.

[8] Eshaghi A. Ghasemi HM. Rassizadehghani J. Effect of heat treatment on microstructure and wear behavior of Al–Si alloys with various iron contents. Materials and Design.2011; 3(32):1520 – 25.

[9] Okonkwoa PC, Kelly G, Rolfe BF. et al. The effect of temperature on sliding wear of steel tool steel pairs. Wear. 2012; (282):22-30.

[10] Albers A, Savio D, Lorentz B. A model to investigate the influence of surface roughness on the tribological behavior of dry friction systems. GFT Fachtagung für Tribologie proceeding. 2010Sep 29. Göttingen. 2010.

[11] Kubiak KJ, Liskiewicz TW, Mathia TG. Surface morphology in engineering applications: Influence of roughness on sliding and wear in dry fretting. Tribol Int. 2011; (44) :1427-32.

[12] Nakamura Y, Muto J, Nagahama H. et al. Amorphization of quartz by friction: Implication to silica-gel lubrication of fault surfaces. Geophysical Research Letter. 2012; (39):21303-15.

[13] ASTM Committee on Standards. International Designation: G133. Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. Annual Book of Standards (03.02). West Conshohocken: Astm Intl; 2016.

[14] Rajan RK, Kumar H, Albert SK. et al. Sliding friction and wear characteristics of grade 410 martensitic stainless steel. Appl Mech Mater. 2014; (592-594):1346-51.

Downloads

Published

2019-12-11

How to Cite

[1]
อินทนนท์ ณ., ภาวะรี น., and ศรีน้อย ส., “Designs and fabrication reciprocating wear testing machine”, UTK RESEARCH JOURNAL, vol. 13, no. 2, pp. 89–98, Dec. 2019.

Issue

Section

Research Articles